• Luo Y, Wen Y, Hu H, Du B, Duan L and Tao D. (2024). Transfer metric learning: algorithms, applications and outlooks. Vicinagearth. 10.1007/s44336-024-00003-8. 1:1.

    https://link.springer.com/10.1007/s44336-024-00003-8

  • Lin Z, Ke H, Wong N, Bai J, Song Y, Zhao H and Ye J. Multi-Relational Graph based Heterogeneous Multi-Task Learning in Community Question Answering. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (1038-1047).

    https://doi.org/10.1145/3459637.3482279

  • Gan S, Luo Y, Wen Y, Liu T and Hu H. Deep Heterogeneous Multi-Task Metric Learning for Visual Recognition and Retrieval. Proceedings of the 28th ACM International Conference on Multimedia. (1837-1845).

    https://doi.org/10.1145/3394171.3413574

  • Akbari M, Hu X and Chua T. (2019). Learning Wellness Profiles of Users on Social Networks: The Case of Diabetes. Social Web and Health Research. 10.1007/978-3-030-14714-3_8. (139-169).

    http://link.springer.com/10.1007/978-3-030-14714-3_8

  • Liang J, Chen K, Lin M, Zhang C and Wang F. (2018). Robust finite mixture regression for heterogeneous targets. Data Mining and Knowledge Discovery. 32:6. (1509-1560). Online publication date: 1-Nov-2018.

    https://doi.org/10.1007/s10618-018-0564-z

  • Semantic Feature Learning for Heterogeneous Multitask Classification via Non-Negative Matrix Factorization. IEEE Transactions on Cybernetics. 10.1109/TCYB.2017.2732818. 48:8. (2284-2293).

    https://ieeexplore.ieee.org/document/8000623/

  • Liu Y, Gu Z, Ko T and Hua K. Learning Perceptual Embeddings with Two Related Tasks for Joint Predictions of Media Interestingness and Emotions. Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. (420-427).

    https://doi.org/10.1145/3206025.3206071

  • Akbari M, Hu X, Wang F and Chua T. (2017). Wellness Representation of Users in Social Media: Towards Joint Modelling of Heterogeneity and Temporality. IEEE Transactions on Knowledge and Data Engineering. 29:10. (2360-2373). Online publication date: 1-Oct-2017.

    https://doi.org/10.1109/TKDE.2017.2722411

  • Luo Y, Tao D and en Y. Exploiting high-order information in heterogeneous multi-task feature learning. Proceedings of the 26th International Joint Conference on Artificial Intelligence. (2443-2449).

    /doi/10.5555/3172077.3172228

  • Liu B, Xu Z, Dai B, Bai H, Fang X, Ren Y and Zhe S. (2017). Learning from semantically dependent multi-tasks 2017 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2017.7966296. 978-1-5090-6182-2. (3498-3505).

    http://ieeexplore.ieee.org/document/7966296/

  • Li X and Huan J. aptMTVL. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. (1171-1180).

    https://doi.org/10.1145/2983323.2983783