• Lindstrom P, Hittinger J, Diffenderfer J, Fox A, Osei-Kuffuor D and Banks J. (2024). ZFP: A compressed array representation for numerical computations. The International Journal of High Performance Computing Applications. 10.1177/10943420241284023.

    https://journals.sagepub.com/doi/10.1177/10943420241284023

  • Fridman Y, Tamir G and Oren G. (2023). Portability and Scalability of OpenMP Offloading on State-of-the-Art Accelerators. High Performance Computing. 10.1007/978-3-031-40843-4_28. (378-390).

    https://link.springer.com/10.1007/978-3-031-40843-4_28

  • Underwood R, Bessac J, Di S and Cappello F. (2022). Understanding the Effects of Modern Compressors on the Community Earth Science Model 2022 IEEE/ACM 8th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD). 10.1109/DRBSD56682.2022.00006. 978-1-6654-6337-9. (1-10).

    https://ieeexplore.ieee.org/document/10025480/

  • Chen Q, Cao J and Xia Y. Physics-Enhanced PCA for Data Compression in Edge Devices. IEEE Transactions on Green Communications and Networking. 10.1109/TGCN.2022.3171681. 6:3. (1624-1634).

    https://ieeexplore.ieee.org/document/9766040/

  • Kolomenskiy D, Onishi R and Uehara H. (2022). WaveRange: wavelet-based data compression for three-dimensional numerical simulations on regular grids. Journal of Visualization. 10.1007/s12650-021-00813-8. 25:3. (543-573). Online publication date: 1-Jun-2022.

    https://link.springer.com/10.1007/s12650-021-00813-8

  • Bhatia H, Hoang D, Morrical N, Pascucci V, Bremer P and Lindstrom P. AMM: Adaptive Multilinear Meshes. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2022.3165392. (1-1).

    https://ieeexplore.ieee.org/document/9751449/

  • Pinard A, Hammerling D and Baker A. (2020). Assessing Differences in Large Spatio-temporal Climate Datasets with a New Python package 2020 IEEE International Conference on Big Data (Big Data). 10.1109/BigData50022.2020.9378100. 978-1-7281-6251-5. (2699-2707).

    https://ieeexplore.ieee.org/document/9378100/

  • Devarajan H, Kougkas A, Logan L and Sun X. (2020). HCompress: Hierarchical Data Compression for Multi-Tiered Storage Environments 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 10.1109/IPDPS47924.2020.00064. 978-1-7281-6876-0. (557-566).

    https://ieeexplore.ieee.org/document/9139838/

  • McKnight C, Poulos A, Bender M, Calhoun J and Feltus F. (2019). Exploring Lossy Compression of Gene Expression Matrices 2019 IEEE/ACM 5th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-5). 10.1109/DRBSD-549595.2019.00010. 978-1-7281-6017-7. (28-34).

    https://ieeexplore.ieee.org/document/8955120/

  • Reza T, Calhoun J, Keipert K, Di S and Cappello F. (2019). Analyzing the Performance and Accuracy of Lossy Checkpointing on Sub-Iteration of NWChem 2019 IEEE/ACM 5th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-5). 10.1109/DRBSD-549595.2019.00009. 978-1-7281-6017-7. (23-27).

    https://ieeexplore.ieee.org/document/8955115/

  • Triantafyllides P, Reza T and Calhoun J. (2019). Analyzing the Impact of Lossy Compressor Variability on Checkpointing Scientific Simulations 2019 IEEE International Conference on Cluster Computing (CLUSTER). 10.1109/CLUSTER.2019.8891052. 978-1-7281-4734-5. (1-5).

    https://ieeexplore.ieee.org/document/8891052/

  • Baker A, Hammerling D and Turton T. (2019). Evaluating image quality measures to assess the impact of lossy data compression applied to climate simulation data. Computer Graphics Forum. 10.1111/cgf.13707. 38:3. (517-528). Online publication date: 1-Jun-2019.

    https://onlinelibrary.wiley.com/doi/10.1111/cgf.13707

  • Zhang J, Zhuo X, Moon A, Liu H and Son S. (2019). Efficient Encoding and Reconstruction of HPC Datasets for Checkpoint/Restart 2019 35th Symposium on Mass Storage Systems and Technologies (MSST). 10.1109/MSST.2019.00-14. 978-1-7281-3920-3. (79-91).

    https://ieeexplore.ieee.org/document/8890158/

  • Calhoun J, Cappello F, Olson L, Snir M and Gropp W. (2018). Exploring the feasibility of lossy compression for PDE simulations. The International Journal of High Performance Computing Applications. 10.1177/1094342018762036. 33:2. (397-410). Online publication date: 1-Mar-2019.

    https://journals.sagepub.com/doi/10.1177/1094342018762036

  • Hoang D, Klacansky P, Bhatia H, Bremer P, Lindstrom P and Pascucci V. A Study of the Trade-off Between Reducing Precision and Reducing Resolution for Data Analysis and Visualization. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2018.2864853. 25:1. (1193-1203).

    https://ieeexplore.ieee.org/document/8440822/

  • Peterka T, Nashed Y, Grindeanu I, Mahadevan V, Yeh R and Tricoche X. (2018). Foundations of Multivariate Functional Approximation for Scientific Data 2018 IEEE 8th Symposium on Large Data Analysis and Visualization (LDAV). 10.1109/LDAV.2018.8739195. 978-1-5386-6873-3. (61-71).

    https://ieeexplore.ieee.org/document/8739195/

  • Li S, Larsen M, Clyne J and Childs H. Performance Impacts of In Situ Wavelet Compression on Scientific Simulations. Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization. (37-41).

    https://doi.org/10.1145/3144769.3144773

  • Najmabadi S, Offenhäuser P, Hamann M, Jajnabalkya G, Hempert F, Glass C and Simon S. (2017). Analyzing the Effect and Performance of Lossy Compression on Aeroacoustic Simulation of Gas Injector. Computation. 10.3390/computation5020024. 5:4. (24).

    http://www.mdpi.com/2079-3197/5/2/24

  • Baker A, Xu H, Hammerling D, Li S and Clyne J. (2017). Toward a Multi-method Approach: Lossy Data Compression for Climate Simulation Data. High Performance Computing. 10.1007/978-3-319-67630-2_3. (30-42).

    http://link.springer.com/10.1007/978-3-319-67630-2_3

  • Kunkel J, Novikova A, Betke E and Schaare A. (2017). Toward Decoupling the Selection of Compression Algorithms from Quality Constraints. High Performance Computing. 10.1007/978-3-319-67630-2_1. (3-14).

    http://link.springer.com/10.1007/978-3-319-67630-2_1

  • Baker A, Hammerling D, Mickelson S, Xu H, Stolpe M, Naveau P, Sanderson B, Ebert-Uphoff I, Samarasinghe S, De Simone F, Carbone F, Gencarelli C, Dennis J, Kay J and Lindstrom P. (2016). Evaluating lossy data compression on climate simulation data within a large ensemble. Geoscientific Model Development. 10.5194/gmd-9-4381-2016. 9:12. (4381-4403).

    https://www.geosci-model-dev.net/9/4381/2016/

  • Castruccio S and Genton M. (2016). Compressing an Ensemble With Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature. Technometrics. 10.1080/00401706.2015.1027068. 58:3. (319-328). Online publication date: 2-Jul-2016.

    https://www.tandfonline.com/doi/full/10.1080/00401706.2015.1027068

  • Zhao D, Qiao K, Yin J and Raicu I. Dynamic Virtual Chunks: On Supporting Efficient Accesses to Compressed Scientific Data. IEEE Transactions on Services Computing. 10.1109/TSC.2015.2456889. 9:1. (96-109).

    https://ieeexplore.ieee.org/document/7159069/

  • Zhao D, Mahakode A, Lakshminarasaiah S and Raicu I. (2016). High-Performance Storage Support for Scientific Big Data Applications on the Cloud. Resource Management for Big Data Platforms. 10.1007/978-3-319-44881-7_8. (147-170).

    http://link.springer.com/10.1007/978-3-319-44881-7_8

  • Lindstrom P. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2014.2346458. 20:12. (2674-2683).

    http://ieeexplore.ieee.org/document/6876024/

  • Zhao D, Yin J, Qiao K and Raicu I. (2014). Virtual chunks: On supporting random accesses to scientific data in compressible storage systems 2014 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2014.7004238. 978-1-4799-5666-1. (231-240).

    http://ieeexplore.ieee.org/document/7004238/

  • Son S, Chen Z, Hendrix W, Agrawal A, Liao W and Choudhary A. (2014). Data Compression for the Exascale Computing Era - Survey. Supercomputing Frontiers and Innovations: an International Journal. 1:2. (76-88). Online publication date: 9-Jul-2014.

    https://doi.org/10.14529/jsfi140205

  • Baker A, Xu H, Dennis J, Levy M, Nychka D, Mickelson S, Edwards J, Vertenstein M and Wegener A. A methodology for evaluating the impact of data compression on climate simulation data. Proceedings of the 23rd international symposium on High-performance parallel and distributed computing. (203-214).

    https://doi.org/10.1145/2600212.2600217

  • Liu S, Huang X, Ni Y, Fu H and Yang G. A Versatile Compression Method for Floating-Point Data Stream. Proceedings of the 2013 Fourth International Conference on Networking and Distributed Computing. (141-145).

    https://doi.org/10.1109/ICNDC.2013.32