• Koparkar C, Singhal V, Gupta A, Rainey M, Vollmer M, Pelenitsyn A, Tobin-Hochstadt S, Kulkarni M and Newton R. Garbage Collection for Mostly Serialized Heaps. Proceedings of the 2024 ACM SIGPLAN International Symposium on Memory Management. (1-14).

    https://doi.org/10.1145/3652024.3665512

  • Mandarapu D, Nagarajan V, Pelenitsyn A and Kulkarni M. Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing. Proceedings of the 38th ACM International Conference on Supercomputing. (14-25).

    https://doi.org/10.1145/3650200.3656601

  • Hijma P, Heldens S, Sclocco A, van Werkhoven B and Bal H. (2023). Optimization Techniques for GPU Programming. ACM Computing Surveys. 55:11. (1-81). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3570638

  • Chowdhury A, Kesserwani G, Rougé C and Richmond P. (2023). GPU-parallelisation of Haar wavelet-based grid resolution adaptation for fast finite volume modelling: application to shallow water flows. Journal of Hydroinformatics. 10.2166/hydro.2023.154. 25:4. (1210-1234). Online publication date: 1-Jul-2023.

    https://iwaponline.com/jh/article/25/4/1210/95732/GPU-parallelisation-of-Haar-wavelet-based-grid

  • Nagarajan V and Kulkarni M. (2023). RT-DBSCAN: Accelerating DBSCAN using Ray Tracing Hardware 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 10.1109/IPDPS54959.2023.00100. 979-8-3503-3766-2. (963-973).

    https://ieeexplore.ieee.org/document/10177455/

  • Shah M, Neff R, Wu H, Minutoli M, Tumeo A and Becchi M. Accelerating Random Forest Classification on GPU and FPGA. Proceedings of the 51st International Conference on Parallel Processing. (1-11).

    https://doi.org/10.1145/3545008.3545067

  • Zhao W, Wang W and Wang Q. (2021). Optimization of cosmological N-body simulation with FMM-PM on SIMT accelerators. The Journal of Supercomputing. 10.1007/s11227-021-04153-0. 78:5. (7186-7205). Online publication date: 1-Apr-2022.

    https://link.springer.com/10.1007/s11227-021-04153-0

  • Iannetta P, Gonnord L and Radanne G. Compiling pattern matching to in-place modifications. Proceedings of the 20th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences. (123-129).

    https://doi.org/10.1145/3486609.3487204

  • Koparkar C, Rainey M, Vollmer M, Kulkarni M and Newton R. (2021). Efficient tree-traversals: reconciling parallelism and dense data representations. Proceedings of the ACM on Programming Languages. 5:ICFP. (1-29). Online publication date: 22-Aug-2021.

    https://doi.org/10.1145/3473596

  • Li M, Hawrylak P and Hale J. (2020). Implementing an Attack Graph Generator in CUDA 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 10.1109/IPDPSW50202.2020.00128. 978-1-7281-7445-7. (730-738).

    https://ieeexplore.ieee.org/document/9150145/

  • Wu Y, Yeh M and Kuo T. (2019). Fast Frequent Pattern Mining without Candidate Generations on GPU by Low Latency Memory Allocation 2019 IEEE International Conference on Big Data (Big Data). 10.1109/BigData47090.2019.9006541. 978-1-7281-0858-2. (1407-1416).

    https://ieeexplore.ieee.org/document/9006541/

  • Liu J, Robson M, Quinn T and Kulkarni M. Efficient GPU tree walks for effective distributed n-body simulations. Proceedings of the ACM International Conference on Supercomputing. (24-34).

    https://doi.org/10.1145/3330345.3330348

  • Vollmer M, Koparkar C, Rainey M, Sakka L, Kulkarni M and Newton R. LoCal: a language for programs operating on serialized data. Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. (48-62).

    https://doi.org/10.1145/3314221.3314631

  • Wu S, Zhou F, Gao X, Jin H and Ren J. (2019). Dual-Page Checkpointing. ACM Transactions on Architecture and Code Optimization. 15:4. (1-27). Online publication date: 8-Jan-2019.

    https://doi.org/10.1145/3291057

  • Qiu X and Wang Y. (2019). A Decidable Logic for Tree Data-Structures with Measurements. Verification, Model Checking, and Abstract Interpretation. 10.1007/978-3-030-11245-5_15. (318-341).

    http://link.springer.com/10.1007/978-3-030-11245-5_15

  • Wang Y, Lee V, Wei G and Brooks D. (2019). Predicting New Workload or CPU Performance by Analyzing Public Datasets. ACM Transactions on Architecture and Code Optimization. 15:4. (1-21). Online publication date: 31-Dec-2019.

    https://doi.org/10.1145/3284127

  • Hong D, Wu J, Liu Y, Fu S and Hsu W. (2018). Processor-Tracing Guided Region Formation in Dynamic Binary Translation. ACM Transactions on Architecture and Code Optimization. 15:4. (1-25). Online publication date: 31-Dec-2019.

    https://doi.org/10.1145/3281664

  • Zhang F and Xue J. (2018). Poker. ACM Transactions on Architecture and Code Optimization. 15:4. (1-28). Online publication date: 31-Dec-2019.

    https://doi.org/10.1145/3280850

  • Moll S and Hack S. (2018). Partial control-flow linearization. ACM SIGPLAN Notices. 53:4. (543-556). Online publication date: 2-Dec-2018.

    https://doi.org/10.1145/3296979.3192413

  • Wu H, Ravi J and Becchi M. (2018). Compiling SIMT Programs on Multi- and Many-Core Processors with Wide Vector Units: A Case Study with CUDA 2018 IEEE 25th International Conference on High Performance Computing (HiPC). 10.1109/HiPC.2018.00022. 978-1-5386-8386-6. (123-132).

    https://ieeexplore.ieee.org/document/8638032/

  • Moll S and Hack S. Partial control-flow linearization. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. (543-556).

    https://doi.org/10.1145/3192366.3192413

  • Zhang F and Xue J. Poker: permutation-based SIMD execution of intensive tree search by path encoding. Proceedings of the 2018 International Symposium on Code Generation and Optimization. (87-99).

    https://doi.org/10.1145/3168808

  • Zhang F and Xue J. (2018). Poker: permutation-based SIMD execution of intensive tree search by path encoding the 2018 International Symposium. 10.1145/3179541.3168808. 9781450356176. (87-99).

    http://dl.acm.org/citation.cfm?doid=3179541.3168808

  • Wu H and Becchi M. (2017). An Analytical Study of Recursive Tree Traversal Patterns on Multi- and Many-Core Platforms 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS). 10.1109/ICPADS.2017.00082. 978-1-5386-2129-5. (586-595).

    https://ieeexplore.ieee.org/document/8368411/

  • Hegde N, Liu J, Sundararajah K and Kulkarni M. (2017). Treelogy: A benchmark suite for tree traversals 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 10.1109/ISPASS.2017.7975294. 978-1-5386-3890-3. (227-238).

    http://ieeexplore.ieee.org/document/7975294/

  • Lu Y, Yang L, Bhavsar V and Kumar N. (2017). Tree structured data processing on GPUs 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence. 10.1109/CONFLUENCE.2017.7943203. 978-1-5090-3519-9. (498-505).

    https://ieeexplore.ieee.org/document/7943203/

  • Hbeika J and Kulkarni M. (2017). Locality-Aware Task-Parallel Execution on GPUs. Languages and Compilers for Parallel Computing. 10.1007/978-3-319-52709-3_19. (250-264).

    http://link.springer.com/10.1007/978-3-319-52709-3_19

  • Liu J, Hegde N and Kulkarni M. (2016). Hybrid CPU-GPU scheduling and execution of tree traversals. ACM SIGPLAN Notices. 51:8. (1-2). Online publication date: 9-Nov-2016.

    https://doi.org/10.1145/3016078.2851174

  • Hegde N, Liu J and Kulkarni M. (2016). Treelogy: a benchmark suite for tree traversal applications 2016 IEEE International Symposium on Workload Characterization (IISWC). 10.1109/IISWC.2016.7581286. 978-1-5090-3896-1. (1-2).

    http://ieeexplore.ieee.org/document/7581286/

  • Zhang F, Di P, Zhou H, Liao X and Xue J. (2016). RegTT: Accelerating Tree Traversals on GPUs by Exploiting Regularities 2016 45th International Conference on Parallel Processing (ICPP). 10.1109/ICPP.2016.71. 978-1-5090-2823-8. (562-571).

    http://ieeexplore.ieee.org/document/7573860/

  • Liu J, Hegde N and Kulkarni M. Hybrid CPU-GPU scheduling and execution of tree traversals. Proceedings of the 2016 International Conference on Supercomputing. (1-12).

    https://doi.org/10.1145/2925426.2926261

  • Wu H, Li D and Becchi M. (2016). Compiler-Assisted Workload Consolidation for Efficient Dynamic Parallelism on GPU 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 10.1109/IPDPS.2016.98. 978-1-5090-2140-6. (534-543).

    http://ieeexplore.ieee.org/document/7516050/

  • Liu J, Hegde N and Kulkarni M. Hybrid CPU-GPU scheduling and execution of tree traversals. Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. (1-2).

    https://doi.org/10.1145/2851141.2851174

  • Baker C, Milne L, Drapeau R, Scofield J, Bennett C and Ladner R. (2016). Tactile Graphics with a Voice. ACM Transactions on Accessible Computing. 8:1. (1-22). Online publication date: 29-Jan-2016.

    https://doi.org/10.1145/2854005

  • Grasberger H, Duprat J, Wyvill B, Lalonde P and Rossignac J. (2016). Efficient data-parallel tree-traversal for BlobTrees. Computer-Aided Design. 70:C. (171-181). Online publication date: 1-Jan-2016.

    https://doi.org/10.1016/j.cad.2015.06.013

  • Li D, Wu H and Becchi M. Nested Parallelism on GPU. Proceedings of the 2015 44th International Conference on Parallel Processing (ICPP). (979-988).

    https://doi.org/10.1109/ICPP.2015.107

  • Kohek Š and Strnad D. (2015). Interactive synthesis of self-organizing tree models on the GPU. Computing. 97:2. (145-169). Online publication date: 1-Feb-2015.

    https://doi.org/10.1007/s00607-014-0424-7

  • Wu Z, Ma W, Long G, Li Y, Tang Q and Wang Z. High performance two-dimensional phase unwrapping on GPUs. Proceedings of the 11th ACM Conference on Computing Frontiers. (1-10).

    https://doi.org/10.1145/2597917.2597931

  • Li X, Hess T, McNab A and Yu Y. (2009). Culture and acceptance of global web sites. ACM SIGMIS Database: the DATABASE for Advances in Information Systems. 40:4. (49-74). Online publication date: 30-Oct-2009.

    https://doi.org/10.1145/1644953.1644959

  • Dai H and Palvi P. (2009). Mobile commerce adoption in China and the United States. ACM SIGMIS Database: the DATABASE for Advances in Information Systems. 40:4. (43-61). Online publication date: 30-Oct-2009.

    https://doi.org/10.1145/1644953.1644958

  • Cicekli N, Cosar A, Dogac A, Polat F, Senkul P, Toroslu I and Yazici A. (2005). Data management research at the Middle East Technical University. ACM SIGMOD Record. 34:3. (81-84). Online publication date: 1-Sep-2005.

    https://doi.org/10.1145/1084805.1084822

  • Ulusoy Ö. (2005). Database research at Bilkent University. ACM SIGMOD Record. 34:3. (77-80). Online publication date: 1-Sep-2005.

    https://doi.org/10.1145/1084805.1084821

  • Medeiros C, Perez-Alcazar J, Digiampietri L, Pastorello G, Santanche A, Torres R, Madeira E and Bacarin E. (2005). WOODSS and the Web. ACM SIGMOD Record. 34:3. (18-23). Online publication date: 1-Sep-2005.

    https://doi.org/10.1145/1084805.1084810