• Pei W, Xue B, Zhang M, Shang L, Yao X and Zhang Q. A Survey on Unbalanced Classification: How Can Evolutionary Computation Help?. IEEE Transactions on Evolutionary Computation. 10.1109/TEVC.2023.3257230. 28:2. (353-373).

    https://ieeexplore.ieee.org/document/10068793/

  • Picek S, Hemberg E, Jakobovic D and O’Reilly U. (2018). One-Class Classification of Low Volume DoS Attacks with Genetic Programming. Genetic Programming Theory and Practice XV. 10.1007/978-3-319-90512-9_10. (149-168).

    http://link.springer.com/10.1007/978-3-319-90512-9_10

  • Zaloga A, Yakimov I and Dubinin P. (2017). Determination of the [Pt(NH 3 ) 5 Cl]Br 3 crystal structure from X-ray powder diffraction data using multi-population genetic algorithm . Powder Diffraction. 10.1017/S0885715617000197. 32:S1. (S110-S117). Online publication date: 1-Sep-2017.

    https://www.cambridge.org/core/product/identifier/S0885715617000197/type/journal_article

  • Dhifli W, Da Costa N and Elati M. An evolutionary schema for mining skyline clusters of attributed graph data. 2017 IEEE Congress on Evolutionary Computation (CEC). (2102-2109).

    https://doi.org/10.1109/CEC.2017.7969559

  • Tran B, Picek S and Xue B. (2017). Automatic Feature Construction for Network Intrusion Detection. Simulated Evolution and Learning. 10.1007/978-3-319-68759-9_46. (569-580).

    http://link.springer.com/10.1007/978-3-319-68759-9_46

  • Cao V, Nicolau M and McDermott J. (2016). A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection. Parallel Problem Solving from Nature – PPSN XIV. 10.1007/978-3-319-45823-6_67. (717-726).

    http://link.springer.com/10.1007/978-3-319-45823-6_67

  • Karimian N, Tehranipoor F, Rahman M, Kelly S and Forte D. (2015). Genetic Algorithm for hardware Trojan detection with ring oscillator network (RON) 2015 IEEE International Symposium on Technologies for Homeland Security (HST). 10.1109/THS.2015.7225334. 978-1-4799-1737-2. (1-6).

    http://ieeexplore.ieee.org/document/7225334/