• Lu J, Liu J, Xu Z and Ma Z. (2024). Rolling motion of six-bar tensegrity structure based on PSO. Structures. 10.1016/j.istruc.2024.106798. 65. (106798). Online publication date: 1-Jul-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S2352012424009500

  • Liu S, Yang Q, Lv J and Fang H. Modeling of a Six-Bar Tensegrity Robot Using the Port-Hamiltonian Framework and Experimental Validation. IEEE Robotics and Automation Letters. 10.1109/LRA.2024.3381819. 9:5. (4439-4446).

    https://ieeexplore.ieee.org/document/10479979/

  • Yoshimitsu Y, Tsukamoto K and Ikemoto S. (2022). Development of Pneumatically Driven Tensegrity Manipulator without Mechanical Springs 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 10.1109/IROS47612.2022.9982208. 978-1-6654-7927-1. (3145-3150).

    https://ieeexplore.ieee.org/document/9982208/

  • Shah D, Booth J, Baines R, Wang K, Vespignani M, Bekris K and Kramer-Bottiglio R. (2022). Tensegrity Robotics. Soft Robotics. 10.1089/soro.2020.0170. 9:4. (639-656). Online publication date: 1-Aug-2022.

    https://www.liebertpub.com/doi/10.1089/soro.2020.0170

  • Doney K, Petridou A, Karaul J, Khan A, Liu G and Rieffel J. (2020). Behavioral Repertoires for Soft Tensegrity Robots 2020 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI47803.2020.9308218. 978-1-7281-2547-3. (2265-2271).

    https://ieeexplore.ieee.org/document/9308218/

  • Usevitch N, Hammond Z and Schwager M. Locomotion of Linear Actuator Robots Through Kinematic Planning and Nonlinear Optimization. IEEE Transactions on Robotics. 10.1109/TRO.2020.2995067. 36:5. (1404-1421).

    https://ieeexplore.ieee.org/document/9106865/

  • Baines R, Booth J and Kramer-Bottiglio R. Rolling Soft Membrane-Driven Tensegrity Robots. IEEE Robotics and Automation Letters. 10.1109/LRA.2020.3015185. 5:4. (6567-6574).

    https://ieeexplore.ieee.org/document/9162439/

  • Yates C, Christopher R and Tumer K. Multi-fitness learning for behavior-driven cooperation. Proceedings of the 2020 Genetic and Evolutionary Computation Conference. (453-461).

    https://doi.org/10.1145/3377930.3390220

  • Kim K, Agogino A and Agogino A. (2020). Rolling Locomotion of Cable-Driven Soft Spherical Tensegrity Robots. Soft Robotics. 10.1089/soro.2019.0056.

    https://www.liebertpub.com/doi/10.1089/soro.2019.0056

  • Dixit G, Zerbel N and Tumer K. (2019). Dirichlet-Multinomial Counterfactual Rewards for Heterogeneous Multiagent Systems 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS). 10.1109/MRS.2019.8901077. 978-1-7281-2876-4. (209-215).

    https://ieeexplore.ieee.org/document/8901077/

  • Bonardi S, Romanishin J, Rus D and Kubota T. (2019). Central Pattern Generators Control of Momentum Driven Compliant Structures 2019 International Conference on Robotics and Automation (ICRA). 10.1109/ICRA.2019.8793806. 978-1-5386-6027-0. (3585-3591).

    https://ieeexplore.ieee.org/document/8793806/

  • Kimber J, Ji Z, Petridou A, Sipple T, Barhydt K, Boggs J, Dosiek L and Rieffel J. (2019). Low-Cost Wireless Modular Soft Tensegrity Robots 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 10.1109/ROBOSOFT.2019.8722723. 978-1-5386-9260-8. (88-93).

    https://ieeexplore.ieee.org/document/8722723/

  • Roffman K and Lesieutre G. (2019). Cable-Actuated Articulated Cylindrical Tensegrity Booms AIAA Scitech 2019 Forum. 10.2514/6.2019-1526. 978-1-62410-578-4. Online publication date: 7-Jan-2019.

    https://arc.aiaa.org/doi/10.2514/6.2019-1526

  • Vumiliya A and Luo A. (2019). Comparative Study of Deployable and Ball Tensegrity Structures. Advances in Mechanism and Machine Science. 10.1007/978-3-030-20131-9_187. (1889-1898).

    http://link.springer.com/10.1007/978-3-030-20131-9_187

  • Duarte M, Gomes J, Oliveira S and Christensen A. Evolution of Repertoire-Based Control for Robots With Complex Locomotor Systems. IEEE Transactions on Evolutionary Computation. 10.1109/TEVC.2017.2722101. 22:2. (314-328).

    https://ieeexplore.ieee.org/document/7964759/

  • Zhao Y, Zhou S, Lin C and Li D. (2017). An efficient locomotion strategy for six-strut tensegrity robots 2017 13th IEEE International Conference on Control & Automation (ICCA). 10.1109/ICCA.2017.8003096. 978-1-5386-2679-5. (413-418).

    http://ieeexplore.ieee.org/document/8003096/

  • LaFerriere B, Schlect C and Swensen J. (2017). Compliant, bi-stable mechanisms with multiple stiffnesses through controlled spring buckling 2017 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA.2017.7989353. 978-1-5090-4633-1. (3074-3079).

    http://ieeexplore.ieee.org/document/7989353/

  • Tian Y, Yao Y, Ding W and Xun Z. (2014). Design and locomotion analysis of a novel deformable mobile robot with worm-like, self-crossing and rolling motion. Robotica. 10.1017/S0263574714002689. 34:09. (1961-1978). Online publication date: 1-Sep-2016.

    http://www.journals.cambridge.org/abstract_S0263574714002689

  • Duarte M, Gomes J, Oliveira S and Christensen A. EvoRBC. Proceedings of the Genetic and Evolutionary Computation Conference 2016. (93-100).

    https://doi.org/10.1145/2908812.2908855

  • Sabelhaus A, Bruce J, Caluwaerts K, Manovi P, Firoozi R, Dobi S, Agogino A and SunSpiral V. (2015). System design and locomotion of SUPERball, an untethered tensegrity robot 2015 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA.2015.7139590. 978-1-4799-6923-4. (2867-2873).

    http://ieeexplore.ieee.org/document/7139590/

  • Caluwaerts K and Carbajal J. (2015). Energy conserving constant shape optimization of tensegrity structures. International Journal of Solids and Structures. 10.1016/j.ijsolstr.2014.12.023. 58. (117-127). Online publication date: 1-Apr-2015.

    https://linkinghub.elsevier.com/retrieve/pii/S0020768314004934

  • Böhm V, Zeidis I and Zimmermann K. (2014). An approach to the dynamics and control of a planar tensegrity structure with application in locomotion systems. International Journal of Dynamics and Control. 10.1007/s40435-014-0067-8. 3:1. (41-49). Online publication date: 1-Mar-2015.

    http://link.springer.com/10.1007/s40435-014-0067-8

  • Park I and SunSpiral V. (2014). Impedance controlled twisted string actuators for tensegrity robots 2014 14th International Conference on Control, Automation and Systems (ICCAS). 10.1109/ICCAS.2014.6987763. 978-8-9932-1507-6. (1331-1338).

    http://ieeexplore.ieee.org/document/6987763/

  • Caluwaerts K, Despraz J, Işçen A, Sabelhaus A, Bruce J, Schrauwen B and SunSpiral V. (2014). Design and control of compliant tensegrity robots through simulation and hardware validation. Journal of The Royal Society Interface. 10.1098/rsif.2014.0520. 11:98. Online publication date: 6-Sep-2014.

    https://royalsocietypublishing.org/doi/10.1098/rsif.2014.0520

  • Iscen A, Agogino A, SunSpiral V and Tumer K. (2014). Flop and roll: Learning robust goal-directed locomotion for a Tensegrity Robot 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). 10.1109/IROS.2014.6942864. 978-1-4799-6934-0. (2236-2243).

    http://ieeexplore.ieee.org/document/6942864/

  • Bruce J, Caluwaerts K, Iscen A, Sabelhaus A and SunSpiral V. (2014). Design and evolution of a modular tensegrity robot platform 2014 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA.2014.6907361. 978-1-4799-3685-4. (3483-3489).

    http://ieeexplore.ieee.org/document/6907361/