• Mohammadi Foumani N, Miller L, Tan C, Webb G, Forestier G and Salehi M. (2024). Deep Learning for Time Series Classification and Extrinsic Regression: A Current Survey. ACM Computing Surveys. 56:9. (1-45). Online publication date: 31-Oct-2024.

    https://doi.org/10.1145/3649448

  • Sun B and Chen C. (2024). Sequence-Information Recognition Method Based on Integrated mDTW. Applied Sciences. 10.3390/app14198716. 14:19. (8716).

    https://www.mdpi.com/2076-3417/14/19/8716

  • Foumani N, Tan C, Webb G, Rezatofighi H and Salehi M. (2024). Series2vec: similarity-based self-supervised representation learning for time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-024-01043-w. 38:4. (2520-2544). Online publication date: 1-Jul-2024.

    https://link.springer.com/10.1007/s10618-024-01043-w

  • Alboueishi N, Nagem T and Abdelnabi E. (2024). Human Activity Recognition Using AutoML Approach 2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). 10.1109/MI-STA61267.2024.10599699. 979-8-3503-7263-2. (637-641).

    https://ieeexplore.ieee.org/document/10599699/

  • Mäder A, Meegahapola L and Gatica-Perez D. Learning About Social Context From Smartphone Data: Generalization Across Countries and Daily Life Moments. Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. (1-18).

    https://doi.org/10.1145/3613904.3642444

  • Li Y, Xu Y, Qiu Z and Wu L. (2024). Research on human activity recognition method based on wearable sensors Fourth International Conference on Sensors and Information Technology (ICSI 2024). 10.1117/12.3029327. 9781510678682. (134).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13107/3029327/Research-on-human-activity-recognition-method-based-on-wearable-sensors/10.1117/12.3029327.full

  • Nguyen T, Diakiw S, VerMilyea M, Dinsmore A, Perugini M, Perugini D and Hall J. (2023). Efficient automated error detection in medical data using deep-learning and label-clustering. Scientific Reports. 10.1038/s41598-023-45946-y. 13:1.

    https://www.nature.com/articles/s41598-023-45946-y

  • Alawneh L, Al-Ayyoub M, Al-Sharif Z and Shatnawi A. (2022). Personalized human activity recognition using deep learning and edge-cloud architecture. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-022-03752-w. 14:9. (12021-12033). Online publication date: 1-Sep-2023.

    https://link.springer.com/10.1007/s12652-022-03752-w

  • Zhao B, Liu X, Chen W and Deng R. CrowdFL: Privacy-Preserving Mobile Crowdsensing System Via Federated Learning. IEEE Transactions on Mobile Computing. 10.1109/TMC.2022.3157603. 22:8. (4607-4619).

    https://ieeexplore.ieee.org/document/9730020/

  • Hu Y. (2023). BSDGAN: Balancing Sensor Data Generative Adversarial Networks for Human Activity Recognition 2023 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN54540.2023.10191928. 978-1-6654-8867-9. (1-8).

    https://ieeexplore.ieee.org/document/10191928/

  • Geravesh S and Rupapara V. (2022). Artificial neural networks for human activity recognition using sensor based dataset. Multimedia Tools and Applications. 82:10. (14815-14835). Online publication date: 1-Apr-2023.

    https://doi.org/10.1007/s11042-022-13716-z

  • Kandpal M, Sharma B, Barik R, Chowdhury S, Patra S and Dhaou I. (2023). Human Activity Recognition in Smart Cities from Smart Watch Data using LSTM Recurrent Neural Networks 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC). 10.1109/ICAISC56366.2023.10085688. 978-1-6654-7275-3. (1-6).

    https://ieeexplore.ieee.org/document/10085688/

  • Mohammed A and Mohammad M. (2023). How AI Algorithms Are Being Used in Applications. Soft Computing and Signal Processing. 10.1007/978-981-19-8669-7_5. (41-53).

    https://link.springer.com/10.1007/978-981-19-8669-7_5

  • Semwal V, Gaud N, Lalwani P, Bijalwan V and Alok A. (2022). Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor. Artificial Intelligence Review. 55:2. (1149-1169). Online publication date: 1-Feb-2022.

    https://doi.org/10.1007/s10462-021-09979-x

  • Prasad A, Tyagi A, Althobaiti M, Almulihi A, Mansour R and Mahmoud A. (2021). Human Activity Recognition Using Cell Phone-Based Accelerometer and Convolutional Neural Network. Applied Sciences. 10.3390/app112412099. 11:24. (12099).

    https://www.mdpi.com/2076-3417/11/24/12099

  • Boulahia S, Amamra A, Madi M and Daikh S. (2021). Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition. Machine Vision and Applications. 32:6. Online publication date: 1-Nov-2021.

    https://doi.org/10.1007/s00138-021-01249-8

  • Ekerete I, Garcia-Constantino M, Konios A, Mustafa M, Diaz-Skeete Y, Nugent C and McLaughlin J. (2021). Fusion of Unobtrusive Sensing Solutions for Home-Based Activity Recognition and Classification Using Data Mining Models and Methods. Applied Sciences. 10.3390/app11199096. 11:19. (9096).

    https://www.mdpi.com/2076-3417/11/19/9096

  • Angerbauer S, Palmanshofer A, Selinger S and Kurz M. (2021). Comparing Human Activity Recognition Models Based on Complexity and Resource Usage. Applied Sciences. 10.3390/app11188473. 11:18. (8473).

    https://www.mdpi.com/2076-3417/11/18/8473

  • Zhang B, Xu H, Xiong H, Sun X, Shi L, Fan S and Li J. (2020). A spatiotemporal multi-feature extraction framework with space and channel based squeeze-and-excitation blocks for human activity recognition. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-020-02526-6. 12:7. (7983-7995). Online publication date: 1-Jul-2021.

    https://link.springer.com/10.1007/s12652-020-02526-6

  • Senyurek V, Imtiaz M, Belsare P, Tiffany S and Sazonov E. (2021). Electromyogram in Cigarette Smoking Activity Recognition. Signals. 10.3390/signals2010008. 2:1. (87-97).

    https://www.mdpi.com/2624-6120/2/1/8

  • Takahashi Y, Nakamura K, Kamiyama T, Oguchi M and Yamaguchi S. (2021). Person Identification Based on Accelerations Sensed in Smartphones with LSTM. Journal of Information Processing. 10.2197/ipsjjip.29.707. 29:0. (707-716).

    https://www.jstage.jst.go.jp/article/ipsjjip/29/0/29_707/_article

  • Mazankiewicz A, Böhm K and Berges M. (2020). Incremental Real-Time Personalization in Human Activity Recognition Using Domain Adaptive Batch Normalization. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 4:4. (1-20). Online publication date: 17-Dec-2020.

    https://doi.org/10.1145/3432230

  • Carvalho L and Sofia R. (2020). A Review on Scaling Mobile Sensing Platforms for Human Activity Recognition: Challenges and Recommendations for Future Research. IoT. 10.3390/iot1020025. 1:2. (451-473).

    https://www.mdpi.com/2624-831X/1/2/25

  • Ekerete I, Garcia-Constantino M, Diaz Y, Giggins O, Mustafa M, Konios A, Pouliet P, Nugent C and McLaughlin J. (2020). Data Mining and Fusion of Unobtrusive Sensing Solutions for Indoor Activity Recognition 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. 10.1109/EMBC44109.2020.9175896. 978-1-7281-1990-8. (5357-5361).

    https://ieeexplore.ieee.org/document/9175896/

  • González-Cañete F and Casilari E. (2020). Consumption Analysis of Smartphone based Fall Detection Systems with Multiple External Wireless Sensors. Sensors. 10.3390/s20030622. 20:3. (622).

    https://www.mdpi.com/1424-8220/20/3/622

  • Cheng L, Selamat A, Zabil M, Selamat M, Alias R, Puteh F, Mohamed F and Krejcar O. (2019). Comparing the Accuracy of Hierarchical Agglomerative and K-means Clustering on Mobile Augmented Reality Usability Metrics 2019 IEEE Conference on Big Data and Analytics (ICBDA). 10.1109/ICBDA47563.2019.8987044. 978-1-7281-3308-9. (34-40).

    https://ieeexplore.ieee.org/document/8987044/

  • Fujinami K, Vu T and Sato K. (2019). A Framework for Human-Centric Personalization of Context Recognition Models on Mobile Devices 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00162. 978-1-7281-3024-8. (885-888).

    https://ieeexplore.ieee.org/document/8890368/

  • Abdallah Z, Gaber M, Srinivasan B and Krishnaswamy S. (2018). Activity Recognition with Evolving Data Streams. ACM Computing Surveys. 51:4. (1-36). Online publication date: 31-Jul-2019.

    https://doi.org/10.1145/3158645

  • Sousa Lima W, Souto E, El-Khatib K, Jalali R and Gama J. (2019). Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview. Sensors. 10.3390/s19143213. 19:14. (3213).

    https://www.mdpi.com/1424-8220/19/14/3213

  • Vu T and Fujinami K. (2019). Understanding Compatibility-based Classifier Personalization in Activity Recognition 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR). 10.1109/ICIEV.2019.8858540. 978-1-7281-0786-8. (97-102).

    https://ieeexplore.ieee.org/document/8858540/

  • Bharti P, De D, Chellappan S and Das S. (2019). HuMAn. IEEE Transactions on Mobile Computing. 18:4. (857-870). Online publication date: 1-Apr-2019.

    https://doi.org/10.1109/TMC.2018.2841905

  • Baldominos A, Cervantes A, Saez Y and Isasi P. (2019). A Comparison of Machine Learning and Deep Learning Techniques for Activity Recognition using Mobile Devices. Sensors. 10.3390/s19030521. 19:3. (521).

    http://www.mdpi.com/1424-8220/19/3/521

  • Qolomany B, Al-Fuqaha A, Gupta A, Benhaddou D, Alwajidi S, Qadir J and Fong A. Leveraging Machine Learning and Big Data for Smart Buildings: A Comprehensive Survey. IEEE Access. 10.1109/ACCESS.2019.2926642. 7. (90316-90356).

    https://ieeexplore.ieee.org/document/8754678/

  • Gadebe M, Kogeda O and Ojo S. (2018). Personalized Real Time Human Activity Recognition 2018 5th International Conference on Soft Computing & Machine Intelligence (ISCMI). 10.1109/ISCMI.2018.8703240. 978-1-7281-1301-2. (147-154).

    https://ieeexplore.ieee.org/document/8703240/

  • Celik S and Incel O. (2017). Semantic place prediction from crowd-sensed mobile phone data. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-017-0549-6. 9:6. (2109-2124). Online publication date: 1-Nov-2018.

    http://link.springer.com/10.1007/s12652-017-0549-6

  • de Faria I and Vieira V. A Comparative Study on Fitness Activity Recognition. Proceedings of the 24th Brazilian Symposium on Multimedia and the Web. (327-330).

    https://doi.org/10.1145/3243082.3267452

  • Siirtola P, Koskimäki H and Röning J. OpenHAR. Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. (1396-1403).

    https://doi.org/10.1145/3267305.3267503

  • Mohammad Y, Matsumoto K and Hoashi K. (2018). Primitive activity recognition from short sequences of sensory data. Applied Intelligence. 48:10. (3748-3761). Online publication date: 1-Oct-2018.

    https://doi.org/10.1007/s10489-018-1166-6

  • Giacomelli D and Faria E. Study and Characterization of the Main Tools for Human Activity Recognition using Accelerometer Sensors. Proceedings of the XIV Brazilian Symposium on Information Systems. (1-8).

    https://doi.org/10.1145/3229345.3229385

  • Mohammad Y, Matsumoto K and Hoashi K. Deep feature learning and selection for activity recognition. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. (930-939).

    https://doi.org/10.1145/3167132.3167234

  • Cheng W, Erfani S, Zhang R and Ramamohanarao K. Learning datum-wise sampling frequency for energy-efficient human activity recognition. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. (2143-2150).

    /doi/10.5555/3504035.3504296

  • (2018). Activity-based linkage and ranking methods for personal dataspace. International Journal of Mobile Communications. 16:3. (266-285). Online publication date: 1-Jan-2018.

    https://doi.org/10.1504/IJMC.2018.091381

  • Cheng W, Erfani S, Zhang R and Ramamohanarao K. Markov Dynamic Subsequence Ensemble for Energy-Efficient Activity Recognition. Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. (282-291).

    https://doi.org/10.1145/3144457.3144470

  • Malu M and Findlater L. Sharing automatically tracked activity data. Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare. (136-145).

    https://doi.org/10.1145/3154862.3154864

  • Das S, Roy D, Nandi S, Chakraborty S and Mitra B. (2017). UDAT: User Discrimination Using Activity-Time Information 2017 18th IEEE International Conference on Mobile Data Management (MDM). 10.1109/MDM.2017.59. 978-1-5386-3932-0. (352-355).

    http://ieeexplore.ieee.org/document/7962477/

  • Wang L, Gu T, Tao X and Lu J. (2017). Toward a Wearable RFID System for Real-Time Activity Recognition Using Radio Patterns. IEEE Transactions on Mobile Computing. 16:1. (228-242). Online publication date: 1-Jan-2017.

    https://doi.org/10.1109/TMC.2016.2538230

  • Carlos M, Martínez F, Cornejo R and González L. (2017). Are Android Smartphones Ready to Locally Execute Intelligent Algorithms?. Advances in Soft Computing. 10.1007/978-3-319-62428-0_2. (15-25).

    http://link.springer.com/10.1007/978-3-319-62428-0_2

  • Lee C, Luo Z, Ngiam K, Zhang M, Zheng K, Chen G, Ooi B and Yip W. (2017). Big Healthcare Data Analytics: Challenges and Applications. Handbook of Large-Scale Distributed Computing in Smart Healthcare. 10.1007/978-3-319-58280-1_2. (11-41).

    http://link.springer.com/10.1007/978-3-319-58280-1_2

  • Cheng W, Erfani S, Zhang R and Kotagiri R. (2017). Accurate Recognition of the Current Activity in the Presence of Multiple Activities. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-57529-2_4. (39-50).

    https://link.springer.com/10.1007/978-3-319-57529-2_4

  • Gadebe M and Kogeda O. (2016). Personification of Bag-of-Features Dataset for Real Time Activity Recognition 2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI). 10.1109/ISCMI.2016.27. 978-1-5090-3696-7. (73-78).

    http://ieeexplore.ieee.org/document/8057442/

  • Ni Q, Patterson T, Cleland I and Nugent C. (2016). Dynamic detection of window starting positions and its implementation within an activity recognition framework. Journal of Biomedical Informatics. 62:C. (171-180). Online publication date: 1-Aug-2016.

    https://doi.org/10.1016/j.jbi.2016.07.005

  • Otebolaku A and Andrade M. (2016). User context recognition using smartphone sensors and classification models. Journal of Network and Computer Applications. 66:C. (33-51). Online publication date: 1-May-2016.

    https://doi.org/10.1016/j.jnca.2016.03.013

  • Walse K, Dharaskar R and Thakare V. Performance Evaluation of Classifiers on WISDM Dataset for Human Activity Recognition. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. (1-7).

    https://doi.org/10.1145/2905055.2905232

  • Weiss G, Timko J, Gallagher C, Yoneda K and Schreiber A. (2016). Smartwatch-based activity recognition: A machine learning approach 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). 10.1109/BHI.2016.7455925. 978-1-5090-2455-1. (426-429).

    http://ieeexplore.ieee.org/document/7455925/

  • Gu F, Kealy A, Khoshelham K and Shang J. (2015). User-Independent Motion State Recognition Using Smartphone Sensors. Sensors. 10.3390/s151229821. 15:12. (30636-30652).

    https://www.mdpi.com/1424-8220/15/12/29821

  • Catal C, Tufekci S, Pirmit E and Kocabag G. (2015). On the use of ensemble of classifiers for accelerometer-based activity recognition. Applied Soft Computing. 37:C. (1018-1022). Online publication date: 1-Dec-2015.

    https://doi.org/10.1016/j.asoc.2015.01.025

  • Bisio I, Lavagetto F, Marchese M and Sciarrone A. (2015). A smartphone-centric platform for remote health monitoring of heart failure. International Journal of Communication Systems. 28:11. (1753-1771). Online publication date: 25-Jul-2015.

    https://doi.org/10.1002/dac.2778

  • Casilari E, Luque R and Morón M. (2015). Analysis of Android Device-Based Solutions for Fall Detection. Sensors. 10.3390/s150817827. 15:8. (17827-17894).

    https://www.mdpi.com/1424-8220/15/8/17827

  • Shoaib M, Bosch S, Incel O, Scholten H and Havinga P. (2015). A Survey of Online Activity Recognition Using Mobile Phones. Sensors. 10.3390/s150102059. 15:1. (2059-2085).

    https://www.mdpi.com/1424-8220/15/1/2059

  • Zhong J, Liu L, Wei Y, Luo D, Sun L and Lu Y. Personalized Activity Recognition Using Molecular Complex Detection Clustering. Proceedings of the 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). (850-854).

    https://doi.org/10.1109/UIC-ATC-ScalCom.2014.49

  • Habib M, Mohktar M, Kamaruzzaman S, Lim K, Pin T and Ibrahim F. (2014). Smartphone-Based Solutions for Fall Detection and Prevention: Challenges and Open Issues. Sensors. 10.3390/s140407181. 14:4. (7181-7208).

    https://www.mdpi.com/1424-8220/14/4/7181

  • Scholl P, Kücükyildiz N and Van Laerhoven K. Bridging the last gap. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. (47-50).

    https://doi.org/10.1145/2494091.2494104

  • Xie F, Song A and Ciesielski V. (2013). Activity recognition by smartphone based multi-channel sensors with genetic programming 2013 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC.2013.6557697. 978-1-4799-0454-9. (1162-1169).

    http://ieeexplore.ieee.org/document/6557697/

  • Incel O, Kose M and Ersoy C. (2013). A Review and Taxonomy of Activity Recognition on Mobile Phones. BioNanoScience. 10.1007/s12668-013-0088-3. 3:2. (145-171). Online publication date: 1-Jun-2013.

    http://link.springer.com/10.1007/s12668-013-0088-3