• Tommasel A, Pablos Sarabia R and Assent I. Re2Dan: Retrieval of Medical Documents for e-Health in Danish. Proceedings of the 17th ACM Conference on Recommender Systems. (1208-1211).

    https://doi.org/10.1145/3604915.3610655

  • Garigliotti D, Balog K, Hose K and Bjerva J. (2023). Recommending tasks based on search queries and missions. Natural Language Engineering. 10.1017/S1351324923000219. (1-25).

    https://www.cambridge.org/core/product/identifier/S1351324923000219/type/journal_article

  • Zhou Z, Zhou X, Li M, Song Y, Zhang T and Yan R. Personalized Query Suggestion with Searching Dynamic Flow for Online Recruitment. Proceedings of the 31st ACM International Conference on Information & Knowledge Management. (2773-2783).

    https://doi.org/10.1145/3511808.3557416

  • Erbacher P, Denoyer L and Soulier L. Interactive Query Clarification and Refinement via User Simulation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. (2420-2425).

    https://doi.org/10.1145/3477495.3531871

  • Mustar A, Lamprier S and Piwowarski B. (2021). On the Study of Transformers for Query Suggestion. ACM Transactions on Information Systems. 40:1. (1-27). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3470562

  • Ilyas A, Obaid S and Bawany N. (2021). Multilevel Classification of Pakistani News using Machine Learning 2021 22nd International Arab Conference on Information Technology (ACIT). 10.1109/ACIT53391.2021.9677431. 978-1-6654-1995-6. (1-5).

    https://ieeexplore.ieee.org/document/9677431/

  • He Y, Mao X, Wei W and Huang H. (2021). Question-formed Query Suggestion 2021 IEEE International Conference on Big Knowledge (ICBK). 10.1109/ICKG52313.2021.00071. 978-1-6654-3858-2. (1-8).

    https://ieeexplore.ieee.org/document/9667724/

  • Chen J, Mao J, Liu Y, Ye Z, Ma W, Wang C, Zhang M and Ma S. (2021). A Hybrid Framework for Session Context Modeling. ACM Transactions on Information Systems. 39:3. (1-35). Online publication date: 26-Jul-2021.

    https://doi.org/10.1145/3448127

  • Chen J, Mao J, Liu Y, Zhang F, Zhang M and Ma S. Towards a Better Understanding of Query Reformulation Behavior in Web Search. Proceedings of the Web Conference 2021. (743-755).

    https://doi.org/10.1145/3442381.3450127

  • Kumar N, Karusala N, Ismail A and Tuli A. (2020). Taking the Long, Holistic, and Intersectional View to Women’s Wellbeing. ACM Transactions on Computer-Human Interaction. 27:4. (1-32). Online publication date: 31-Aug-2020.

    https://doi.org/10.1145/3397159

  • Zamani H, Mitra B, Chen E, Lueck G, Diaz F, Bennett P, Craswell N and Dumais S. Analyzing and Learning from User Interactions for Search Clarification. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. (1181-1190).

    https://doi.org/10.1145/3397271.3401160

  • Moro R and Bielikova M. (2020). Navigation leads for exploratory search and navigation in digital libraries. Knowledge and Information Systems. 10.1007/s10115-019-01434-2.

    http://link.springer.com/10.1007/s10115-019-01434-2

  • Liao Z, Song Y and Zhou D. (2020). Query Suggestion. Query Understanding for Search Engines. 10.1007/978-3-030-58334-7_8. (171-203).

    http://link.springer.com/10.1007/978-3-030-58334-7_8

  • Jain H, Balasubramanian V, Chunduri B and Varma M. Slice. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. (528-536).

    https://doi.org/10.1145/3289600.3290979

  • Huang Z, Cautis B, Cheng R, Zheng Y, Mamoulis N and Yan J. (2018). Entity-Based Query Recommendation for Long-Tail Queries. ACM Transactions on Knowledge Discovery from Data. 12:6. (1-24). Online publication date: 31-Dec-2019.

    https://doi.org/10.1145/3233186

  • Jiang J and Wang W. RIN. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (197-206).

    https://doi.org/10.1145/3269206.3271808

  • Scells H, Azzopardi L, Zuccon G and Koopman B. Query Variation Performance Prediction for Systematic Reviews. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. (1089-1092).

    https://doi.org/10.1145/3209978.3210078

  • Huang J, Ding S, Wang H and Liu T. (2018). Learning to Recommend Related Entities With Serendipity for Web Search Users. ACM Transactions on Asian and Low-Resource Language Information Processing. 17:3. (1-22). Online publication date: 10-May-2018.

    https://doi.org/10.1145/3185663

  • Wu B, Xiong C, Sun M and Liu Z. Query Suggestion with Feedback Memory Network. Proceedings of the 2018 World Wide Web Conference. (1563-1571).

    https://doi.org/10.1145/3178876.3186068

  • Balog K. (2018). Utilizing Entities for an Enhanced Search Experience. Entity-Oriented Search. 10.1007/978-3-319-93935-3_9. (299-336).

    http://link.springer.com/10.1007/978-3-319-93935-3_9

  • Ding H, Zhang S, Garigliotti D and Balog K. (2018). Generating High-Quality Query Suggestion Candidates for Task-Based Search. Advances in Information Retrieval. 10.1007/978-3-319-76941-7_54. (625-631).

    http://link.springer.com/10.1007/978-3-319-76941-7_54

  • Pera M and Ng Y. (2017). Using online data sources to make query suggestions for children. Web Intelligence. 10.3233/WEB-170367. 15:4. (303-323). Online publication date: 20-Nov-2017.

    https://journals.sagepub.com/doi/10.3233/WEB-170367

  • Dehghani M, Rothe S, Alfonseca E and Fleury P. Learning to Attend, Copy, and Generate for Session-Based Query Suggestion. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (1747-1756).

    https://doi.org/10.1145/3132847.3133010

  • Garigliotti D and Balog K. Generating Query Suggestions to Support Task-Based Search. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. (1153-1156).

    https://doi.org/10.1145/3077136.3080745

  • Horovitz M, Lewin-Eytan L, Libov A, Maarek Y and Raviv A. Mailbox-Based vs. Log-Based Query Completion for Mail Search. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. (937-940).

    https://doi.org/10.1145/3077136.3080683

  • Wang J, Huang J, Guo J and Lan Y. (2015). Query ranking model for search engine query recommendation. International Journal of Machine Learning and Cybernetics. 10.1007/s13042-015-0362-5. 8:3. (1019-1038). Online publication date: 1-Jun-2017.

    http://link.springer.com/10.1007/s13042-015-0362-5

  • Wei X, Huang H, Nie L, Zhang H, Mao X and Chua T. (2017). I Know What You Want to Express. IEEE Transactions on Knowledge and Data Engineering. 29:2. (344-358). Online publication date: 1-Feb-2017.

    https://doi.org/10.1109/TKDE.2016.2622705

  • Guo J, Zhu X, Lan Y and Cheng X. (2016). Modeling users’ search sessions for high utility query recommendation. Information Retrieval Journal. 10.1007/s10791-016-9287-1. 20:1. (4-24). Online publication date: 1-Feb-2017.

    http://link.springer.com/10.1007/s10791-016-9287-1

  • Chen X, Shin H and Lee H. (2017). Learning to evaluate and recommend query in restaurant search systems. Information Systems and e-Business Management. 15:1. (51-68). Online publication date: 1-Feb-2017.

    https://doi.org/10.1007/s10257-016-0309-8

  • Jiang J and Cheng P. Classifying User Search Intents for Query Auto-Completion. Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval. (49-58).

    https://doi.org/10.1145/2970398.2970400

  • Hagen M, Potthast M, Völske M, Gomoll J and Stein B. How Writers Search. Proceedings of the 2016 ACM on Conference on Human Information Interaction and Retrieval. (193-202).

    https://doi.org/10.1145/2854946.2854969

  • Qi S, Wu D and Mamoulis N. (2016). Location Aware Keyword Query Suggestion Based on Document Proximity. IEEE Transactions on Knowledge and Data Engineering. 28:1. (82-97). Online publication date: 1-Jan-2016.

    https://doi.org/10.1109/TKDE.2015.2465391

  • Shaikh M, Pera M and Ng Y. Suggesting Simple and Comprehensive Queries to Elementary-Grade Children. Proceedings of the 2015 IEEE / WIC / ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) - Volume 01. (252-259).

    https://doi.org/10.1109/WI-IAT.2015.193

  • Wang J, Zhexue Huang J, Guo J and Lan Y. (2015). Recommending high-utility search engine queries via a query-recommending model. Neurocomputing. 167:C. (195-208). Online publication date: 1-Nov-2015.

    https://doi.org/10.1016/j.neucom.2015.04.076

  • Sordoni A, Bengio Y, Vahabi H, Lioma C, Grue Simonsen J and Nie J. A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (553-562).

    https://doi.org/10.1145/2806416.2806493

  • Hennes D, Jong S, Tuyls K and Gal Y. (2015). Metastrategies in Large-Scale Bargaining Settings. ACM Transactions on Intelligent Systems and Technology. 7:1. (1-23). Online publication date: 16-Oct-2015.

    https://doi.org/10.1145/2774224

  • Groves W and Gini M. (2015). On Optimizing Airline Ticket Purchase Timing. ACM Transactions on Intelligent Systems and Technology. 7:1. (1-28). Online publication date: 16-Oct-2015.

    https://doi.org/10.1145/2733384

  • Ding W, Geng X and Zhang X. (2015). Learning to Rank from Noisy Data. ACM Transactions on Intelligent Systems and Technology. 7:1. (1-21). Online publication date: 16-Oct-2015.

    https://doi.org/10.1145/2576230

  • Shokouhi M, Sloan M, Bennett P, Collins-Thompson K and Sarkizova S. Query Suggestion and Data Fusion in Contextual Disambiguation. Proceedings of the 24th International Conference on World Wide Web. (971-980).

    https://doi.org/10.1145/2736277.2741646

  • Hsieh C, Neufeld J, King T and Cho J. Efficient approximate thompson sampling for search query recommendation. Proceedings of the 30th Annual ACM Symposium on Applied Computing. (740-746).

    https://doi.org/10.1145/2695664.2695748

  • Wolber D, Abelson H and Friedman M. (2015). Democratizing Computing with App Inventor. GetMobile: Mobile Computing and Communications. 18:4. (53-58). Online publication date: 14-Jan-2015.

    https://doi.org/10.1145/2721914.2721935

  • Zheng H and Zhang Y. (2015). RDQS: A Relevant and Diverse Query Suggestion Generation Framework. Web Technologies and Applications. 10.1007/978-3-319-25255-1_48. (586-597).

    http://link.springer.com/10.1007/978-3-319-25255-1_48

  • Sydow M, Muntean C, Nardini F, Matwin S and Silvestri F. (2015). MUSETS: Diversity-Aware Web Query Suggestions for Shortening User Sessions. Foundations of Intelligent Systems. 10.1007/978-3-319-25252-0_26. (237-247).

    http://link.springer.com/10.1007/978-3-319-25252-0_26

  • Venkat A and Tullsen D. (2014). Harnessing ISA diversity. ACM SIGARCH Computer Architecture News. 42:3. (121-132). Online publication date: 16-Oct-2014.

    https://doi.org/10.1145/2678373.2665692

  • Badr M and Jerger N. (2014). SynFull. ACM SIGARCH Computer Architecture News. 42:3. (109-120). Online publication date: 16-Oct-2014.

    https://doi.org/10.1145/2678373.2665691

  • Jiang J, Ke Y, Chien P and Cheng P. Learning user reformulation behavior for query auto-completion. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (445-454).

    https://doi.org/10.1145/2600428.2609614

  • Wu L, Cao B, Zhou Y and Li J. Improving query suggestion through noise filtering and query length prediction. Proceedings of the 23rd International Conference on World Wide Web. (399-400).

    https://doi.org/10.1145/2567948.2577339

  • Koh J and Chiu I. (2014). An Efficient Approach for Mining Top-k High Utility Specialized Query Expansions on Social Tagging Systems. Database Systems for Advanced Applications. 10.1007/978-3-319-05813-9_24. (361-376).

    http://link.springer.com/10.1007/978-3-319-05813-9_24

  • Shaikh M, Pera M and Ng Y. A Probabilistic Query Suggestion Approach without Using Query Logs. Proceedings of the 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. (633-639).

    https://doi.org/10.1109/ICTAI.2013.99

  • Diaz F, White R, Buscher G and Liebling D. Robust models of mouse movement on dynamic web search results pages. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (1451-1460).

    https://doi.org/10.1145/2505515.2505717

  • Jiang D, Pei J and Li H. (2013). Mining search and browse logs for web search. ACM Transactions on Intelligent Systems and Technology. 4:4. (1-37). Online publication date: 1-Sep-2013.

    https://doi.org/10.1145/2508037.2508038

  • Shokouhi M. Learning to personalize query auto-completion. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (103-112).

    https://doi.org/10.1145/2484028.2484076

  • Adindla S and Kruschwitz U. Using predicate-argument structure to bootstrap a domain model for site search. Proceedings of the 10th Conference on Open Research Areas in Information Retrieval. (29-32).

    /doi/10.5555/2491748.2491756

  • Muntean C, Nardini F, Silvestri F and Sydow M. Learning to shorten query sessions. Proceedings of the 22nd International Conference on World Wide Web. (131-132).

    https://doi.org/10.1145/2487788.2487851