• Gurushankar K and Grover P. (2024). A Minimal Intervention Definition of Reverse Engineering a Neural Circuit 2024 IEEE International Symposium on Information Theory Workshops (ISIT-W). 10.1109/ISIT-W61686.2024.10591757. 979-8-3503-4844-6. (1-9).

    https://ieeexplore.ieee.org/document/10591757/

  • Magen R and Naor M. (2023). Mirror games against an open book player. Theoretical Computer Science. 976:C. Online publication date: 17-Oct-2023.

    https://doi.org/10.1016/j.tcs.2023.114159

  • Raju D, Bakirtzis G and Topcu U. Memoryless Adversaries in Imperfect Information Games. Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems. (2379-2381).

    /doi/10.5555/3545946.3598940

  • Skyrms B. (2022). The Social Contract, the Game of Life and the Shadow of the Future. Homo Oeconomicus. 10.1007/s41412-022-00119-6.

    https://link.springer.com/10.1007/s41412-022-00119-6

  • Yang Y, Jia K and Rinard M. (2022). On the Impact of Player Capability on Congestion Games. Algorithmic Game Theory. 10.1007/978-3-031-15714-1_18. (311-328).

    https://link.springer.com/10.1007/978-3-031-15714-1_18

  • Raju D, Ehlers R and Topcu U. (2021). Adapting to the Behavior of Environments with Bounded Memory. Electronic Proceedings in Theoretical Computer Science. 10.4204/EPTCS.346.4. 346. (52-66).

    http://eptcs.web.cse.unsw.edu.au/paper.cgi?GandALF2021.4

  • Haghtalab N, Jackson M and Procaccia A. (2021). Belief polarization in a complex world: A learning theory perspective. Proceedings of the National Academy of Sciences. 10.1073/pnas.2010144118. 118:19. Online publication date: 11-May-2021.

    https://pnas.org/doi/full/10.1073/pnas.2010144118

  • Bilò V, Flammini M and Moscardelli L. (2021). On Nash Equilibria in Non-Cooperative All-Optical Networks. Algorithms. 10.3390/a14010015. 14:1. (15).

    https://www.mdpi.com/1999-4893/14/1/15

  • Deuser K and Naumov P. (2020). Navigability with bounded recall autonomous agents with bounded memory autonomous agents with bounded recall working memory of autonomous agents on composition of bounded-recall plans. Artificial Intelligence. 10.1016/j.artint.2020.103399. (103399). Online publication date: 1-Oct-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0004370220301491

  • Ajayakumar J and Shook E. (2020). Leveraging parallel spatio-temporal computing for crime analysis in large datasets: analyzing trends in near-repeat phenomenon of crime in cities. International Journal of Geographical Information Science. 10.1080/13658816.2020.1732393. (1-25).

    https://www.tandfonline.com/doi/full/10.1080/13658816.2020.1732393

  • Halpern J, Pass R and Reichman D. (2019). On the Existence of Nash Equilibrium in Games with Resource-Bounded Players. Algorithmic Game Theory. 10.1007/978-3-030-30473-7_10. (139-152).

    http://link.springer.com/10.1007/978-3-030-30473-7_10

  • García J and van Veelen M. (2018). No Strategy Can Win in the Repeated Prisoner's Dilemma: Linking Game Theory and Computer Simulations. Frontiers in Robotics and AI. 10.3389/frobt.2018.00102. 5.

    https://www.frontiersin.org/article/10.3389/frobt.2018.00102/full

  • Kao Y and Venkatachalam R. (2018). Human and Machine Learning. Computational Economics. 10.1007/s10614-018-9803-z.

    http://link.springer.com/10.1007/s10614-018-9803-z

  • Pai M, Roth A and Ullman J. (2016). An Antifolk Theorem for Large Repeated Games. ACM Transactions on Economics and Computation. 5:2. (1-20). Online publication date: 31-May-2017.

    https://doi.org/10.1145/2976734

  • Barmpounakis E, Vlahogianni E and Golias J. (2016). Modeling cooperation and powered-two wheelers short-term strategic decisions during overtaking in urban arterials. International Journal of Transportation Science and Technology. 10.1016/j.ijtst.2016.11.001. 5:4. (227-238). Online publication date: 1-Dec-2016.

    https://linkinghub.elsevier.com/retrieve/pii/S204604301630017X

  • Russell S. (2016). Rationality and Intelligence: A Brief Update. Fundamental Issues of Artificial Intelligence. 10.1007/978-3-319-26485-1_2. (7-28).

    http://link.springer.com/10.1007/978-3-319-26485-1_2

  • Francès G, Rubio-Campillo X, Lancelotti C and Madella M. (2015). Decision Making in Agent-Based Models. Multi-Agent Systems. 10.1007/978-3-319-17130-2_25. (370-378).

    https://link.springer.com/10.1007/978-3-319-17130-2_25

  • Chen J and Zinger A. (2014). The robustness of zero-determinant strategies in Iterated Prisoner׳s Dilemma games. Journal of Theoretical Biology. 10.1016/j.jtbi.2014.05.004. 357. (46-54). Online publication date: 1-Sep-2014.

    https://linkinghub.elsevier.com/retrieve/pii/S0022519314002744

  • Halpern J, Pass R and Seeman L. The truth behind the myth of the folk theorem. Proceedings of the 5th conference on Innovations in theoretical computer science. (543-554).

    https://doi.org/10.1145/2554797.2554847

  • Burkov A and Chaib-Draa B. (2013). Repeated games for multiagent systems: a survey. The Knowledge Engineering Review. 10.1017/S026988891300009X. 29:1. (1-30). Online publication date: 1-Jan-2014.

    https://www.cambridge.org/core/product/identifier/S026988891300009X/type/journal_article

  • Lu Y and He Y. (2014). Towards the Computation of a Nash Equilibrium. Advances in Neural Networks – ISNN 2014. 10.1007/978-3-319-12436-0_11. (90-99).

    http://link.springer.com/10.1007/978-3-319-12436-0_11

  • Halpern J and Pass R. (2011). Algorithmic rationality. ACM SIGecom Exchanges. 10:2. (9-15). Online publication date: 1-Jun-2011.

    https://doi.org/10.1145/1998549.1998551

  • Roughgarden T. (2009). Computing equilibria: a computational complexity perspective. Economic Theory. 10.1007/s00199-009-0448-y. 42:1. (193-236). Online publication date: 1-Jan-2010.

    http://link.springer.com/10.1007/s00199-009-0448-y

  • Aziz H and Paterson M. False name manipulations in weighted voting games. Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems - Volume 1. (409-416).

    /doi/10.5555/1558013.1558069

  • Koutsoupias E and Papadimitriou C. (2009). Worst-case equilibria. Computer Science Review. 3:2. (65-69). Online publication date: 1-May-2009.

    https://doi.org/10.1016/j.cosrev.2009.04.003

  • Roberts F. (2008). Computer science and decision theory. Annals of Operations Research. 10.1007/s10479-008-0328-z. 163:1. (209-253). Online publication date: 1-Oct-2008.

    http://link.springer.com/10.1007/s10479-008-0328-z

  • Halpern J. Beyond Nash equilibrium. Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning. (6-14).

    /doi/10.5555/3031661.3031664

  • Halpern J. Beyond nash equilibrium. Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing. (1-10).

    https://doi.org/10.1145/1400751.1400752

  • Shoham Y. Game theory pragmatics. Proceedings of the 23rd national conference on Artificial intelligence - Volume 3. (1606-1608).

    /doi/10.5555/1620270.1620343

  • Borgs C, Chayes J, Immorlica N, Kalai A, Mirrokni V and Papadimitriou C. The myth of the folk theorem. Proceedings of the fortieth annual ACM symposium on Theory of computing. (365-372).

    https://doi.org/10.1145/1374376.1374429

  • Fabrikant A and Papadimitriou C. The complexity of game dynamics. Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms. (844-853).

    /doi/10.5555/1347082.1347175

  • Cozic M. La rationalité limitée. Économie et cognition. 10.4000/books.editionsmsh.9450. (199-222).

    http://books.openedition.org/editionsmsh/9450

  • Halpern J. (2008). Computer Science and Game Theory. The New Palgrave Dictionary of Economics. 10.1057/978-1-349-95121-5_2133-1. (1-14).

    https://link.springer.com/10.1057/978-1-349-95121-5_2133-1

  • Deng X and Fang Q. (2008). Algorithmic Cooperative Game Theory. Pareto Optimality, Game Theory And Equilibria. 10.1007/978-0-387-77247-9_7. (159-185).

    http://link.springer.com/10.1007/978-0-387-77247-9_7

  • Powers R, Shoham Y and Vu T. (2007). A general criterion and an algorithmic framework for learning in multi-agent systems. Machine Language. 67:1-2. (45-76). Online publication date: 1-May-2007.

    https://doi.org/10.1007/s10994-006-9643-2

  • Lucatero C. The problem of robot random motion tracking learning algorithms. Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation. (219-224).

    /doi/10.5555/1355681.1355718

  • Lucatero C. The problem of robot random motion tracking learning algorithms. Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation. (219-224).

    /doi/10.5555/1353685.1353722

  • Czumaj A and Vöcking B. (2007). Tight bounds for worst-case equilibria. ACM Transactions on Algorithms. 3:1. (1-17). Online publication date: 1-Feb-2007.

    https://doi.org/10.1145/1186810.1186814

  • Deng X. Making economic theory operational. Proceedings of the Second international conference on Internet and Network Economics. (251-261).

    https://doi.org/10.1007/11944874_23

  • Ben-Sasson E, Kalai A and Kalai E. An approach to bounded rationality. Proceedings of the 19th International Conference on Neural Information Processing Systems. (145-152).

    /doi/10.5555/2976456.2976475

  • Roberts F. (2008). Decision‐making using multi‐attributed alternatives: Raiffa's contributions in the context of 21st century decision problems. Journal of Multi-Criteria Decision Analysis. 10.1002/mcda.416. 14:4-6. (161-168). Online publication date: 1-Jul-2006.

    https://onlinelibrary.wiley.com/doi/10.1002/mcda.416

  • Lepinski M, Liben-Nowell D, Gilbert S and Lehman A. Playing games in many possible worlds. Proceedings of the 7th ACM conference on Electronic commerce. (150-159).

    https://doi.org/10.1145/1134707.1134724

  • Vu T, Powers R and Shoham Y. Learning against multiple opponents. Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems. (752-759).

    https://doi.org/10.1145/1160633.1160766

  • Powers R and Shoham Y. Learning against opponents with bounded memory. Proceedings of the 19th international joint conference on Artificial intelligence. (817-822).

    /doi/10.5555/1642293.1642424

  • Aaronson S. The complexity of agreement. Proceedings of the thirty-seventh annual ACM symposium on Theory of computing. (634-643).

    https://doi.org/10.1145/1060590.1060686

  • Papadimitriou C. Tα Παιδíα Παíζϵι the interaction between algorithms and game theory. Proceedings of the 4th international conference on Experimental and Efficient Algorithms. (1-3).

    https://doi.org/10.1007/11427186_1

  • Bilò V, Flammini M and Moscardelli L. On nash equilibria in non-cooperative all-optical networks. Proceedings of the 22nd annual conference on Theoretical Aspects of Computer Science. (448-459).

    https://doi.org/10.1007/978-3-540-31856-9_37

  • Lucatero C and Espinosa R. Application of automata learning algorithms to robot motion tracking. Proceedings of the 4th WSEAS International Conference on Signal Processing, Robotics and Automation. (1-6).

    /doi/10.5555/1369729.1369734

  • Chen N, Deng X, Sun X and Yao A. (2004). Dynamic Price Sequence and Incentive Compatibility. Automata, Languages and Programming. 10.1007/978-3-540-27836-8_29. (320-331).

    http://link.springer.com/10.1007/978-3-540-27836-8_29

  • Bilò V and Moscardelli L. (2004). The Price of Anarchy in All-Optical Networks. Structural Information and Communication Complexity. 10.1007/978-3-540-27796-5_2. (13-22).

    http://link.springer.com/10.1007/978-3-540-27796-5_2

  • Gottlob G, Greco G and Scarcello F. Pure Nash equilibria. Proceedings of the 9th conference on Theoretical aspects of rationality and knowledge. (215-230).

    https://doi.org/10.1145/846241.846269

  • Gotts N, Polhill J and Law A. (2003). Agent-Based Simulation in the Study of Social Dilemmas. Artificial Intelligence Review. 19:1. (3-92). Online publication date: 1-Mar-2003.

    https://doi.org/10.1023/A:1022120928602

  • Gossner O and Hernández P. (2003). On the complexity of coordination. Mathematics of Operations Research. 28:1. (127-140). Online publication date: 1-Feb-2003.

    https://doi.org/10.1287/moor.28.1.127.14257

  • Czumaj A, Krysta P and Vöcking B. Selfish traffic allocation for server farms. Proceedings of the thiry-fourth annual ACM symposium on Theory of computing. (287-296).

    https://doi.org/10.1145/509907.509952

  • Czumaj A and Vöcking B. Tight bounds for worst-case equilibria. Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. (413-420).

    /doi/10.5555/545381.545436

  • Larson K and Sandholm T. (2001). Bargaining with limited computation. Artificial Intelligence. 132:2. (183-217). Online publication date: 1-Nov-2001.

    https://doi.org/10.1016/S0004-3702(01)00132-1

  • Papadimitriou C. Algorithms, games, and the internet. Proceedings of the thirty-third annual ACM symposium on Theory of computing. (749-753).

    https://doi.org/10.1145/380752.380883

  • Singh S, Kearns M and Mansour Y. Nash convergence of gradient dynamics in general-sum games. Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence. (541-548).

    /doi/10.5555/2073946.2074009

  • Hemaspaandra E and Hemaspaandra L. (2000). Computational Politics: Electoral Systems. Mathematical Foundations of Computer Science 2000. 10.1007/3-540-44612-5_5. (64-83).

    http://link.springer.com/10.1007/3-540-44612-5_5

  • Koutsoupias E and Papadimitriou C. Worst-case equilibria. Proceedings of the 16th annual conference on Theoretical aspects of computer science. (404-413).

    /doi/10.5555/1764891.1764944

  • Russell S. (1999). Rationality and Intelligence. Foundations of Rational Agency. 10.1007/978-94-015-9204-8_2. (11-33).

    http://www.springerlink.com/index/10.1007/978-94-015-9204-8_2

  • Koutsoupias E and Papadimitriou C. (1999). Worst-Case Equilibria. STACS 99. 10.1007/3-540-49116-3_38. (404-413).

    http://link.springer.com/10.1007/3-540-49116-3_38

  • Fortnow L and Kimmel P. Beating a finite automaton in the big match. Proceedings of the 7th conference on Theoretical aspects of rationality and knowledge. (225-234).

    /doi/10.5555/645876.671886

  • Deng X, Ibaraki T and Nagamochi H. Combinatorial optimization games. Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms. (720-729).

    /doi/10.5555/314161.314428

  • Papadimitriou C, Goldreich O, Wigderson A, Razborov A and Sipser M. (1996). The future of computational complexity theory: part I. ACM SIGACT News. 27:3. (6-12). Online publication date: 1-Sep-1996.

    https://doi.org/10.1145/235666.235668

  • Rosin C and Belew R. A competitive approach to game learning. Proceedings of the ninth annual conference on Computational learning theory. (292-302).

    https://doi.org/10.1145/238061.238153

  • Papadimitriou C. (1995). Database metatheory. ACM SIGACT News. 26:3. (13-30). Online publication date: 1-Sep-1995.

    https://doi.org/10.1145/211542.211547

  • Papadimitriou C. Database metatheory. Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. (1-10).

    https://doi.org/10.1145/212433.212436

  • Freund Y, Kearns M, Mansour Y, Ron D, Rubinfeld R and Schapire R. Efficient algorithms for learning to play repeated games against computationally bounded adversaries IEEE 36th Annual Foundations of Computer Science. 10.1109/SFCS.1995.492489. 0-8186-7183-1. (332-341).

    http://ieeexplore.ieee.org/document/492489/