• Chen L, Zhang H, Jose J, Yu H, Moshfeghi Y and Triantafillou P. (2018). Topic detection and tracking on heterogeneous information. Journal of Intelligent Information Systems. 51:1. (115-137). Online publication date: 1-Aug-2018.

    https://doi.org/10.1007/s10844-017-0487-y

  • Yang Z, Ma H, He Z and Wang X. (2018). Finding maximal ranges with unique topics in a text database. World Wide Web. 21:2. (289-310). Online publication date: 1-Mar-2018.

    https://doi.org/10.1007/s11280-017-0448-y

  • Han J, Huang Y, Kumar K and Bhattacharya S. (2018). Time-Varying Dynamic Topic Model. Journal of Global Information Management. 26:1. (104-119). Online publication date: 1-Jan-2018.

    https://doi.org/10.4018/JGIM.2018010106

  • Wistuba M, Schilling N and Schmidt-Thieme L. (2018). Scalable Gaussian process-based transfer surrogates for hyperparameter optimization. Machine Language. 107:1. (43-78). Online publication date: 1-Jan-2018.

    https://doi.org/10.1007/s10994-017-5684-y

  • Diao Q, Jiang J, Zhu F and Lim E. Finding bursty topics from microblogs. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers - Volume 1. (536-544).

    /doi/10.5555/2390524.2390599

  • Hong L, Dom B, Gurumurthy S and Tsioutsiouliklis K. A time-dependent topic model for multiple text streams. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (832-840).

    https://doi.org/10.1145/2020408.2020551

  • Hong L, Yin D, Guo J and Davison B. Tracking trends. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (484-492).

    https://doi.org/10.1145/2020408.2020485

  • Masada T, Fukagawa D, Takasu A, Shibata Y and Oguri K. Modeling topical trends over continuous time with priors. Proceedings of the 7th international conference on Advances in Neural Networks - Volume Part II. (302-311).

    https://doi.org/10.1007/978-3-642-13318-3_38