• Bauer A, Nakajima S and Müller K. (2023). Polynomial-Time Constrained Message Passing for Exact MAP Inference on Discrete Models with Global Dependencies. Mathematics. 10.3390/math11122628. 11:12. (2628).

    https://www.mdpi.com/2227-7390/11/12/2628

  • Bello K and Honorio J. Learning latent variable structured prediction models with Gaussian perturbations. Proceedings of the 32nd International Conference on Neural Information Processing Systems. (3149-3159).

    /doi/10.5555/3327144.3327236

  • Bauer A, Nakajima S and Muller K. Efficient Exact Inference With Loss Augmented Objective in Structured Learning. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2016.2598721. 28:11. (2566-2579).

    http://ieeexplore.ieee.org/document/7547945/

  • Bauer A, Braun M and Muller K. Accurate Maximum-Margin Training for Parsing With Context-Free Grammars. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2015.2497149. 28:1. (44-56).

    http://ieeexplore.ieee.org/document/7347442/

  • Halevy A, Noy N, Sarawagi S, Whang S and Yu X. Discovering Structure in the Universe of Attribute Names. Proceedings of the 25th International Conference on World Wide Web. (939-949).

    https://doi.org/10.1145/2872427.2882975

  • Hadjis S and Ermon S. Importance sampling over sets. Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. (355-364).

    /doi/10.5555/3020847.3020885

  • Ren Z, Peetz M, Liang S, van Dolen W and de Rijke M. Hierarchical multi-label classification of social text streams. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (213-222).

    https://doi.org/10.1145/2600428.2609595

  • Bauer A, Gornitz N, Biegler F, Muller K and Kloft M. Efficient Algorithms for Exact Inference in Sequence Labeling SVMs. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2013.2281761. 25:5. (870-881).

    http://ieeexplore.ieee.org/document/6617696/

  • Ahmed E, Shakhnarovich G and Maji S. (2014). Knowing a Good HOG Filter When You See It: Efficient Selection of Filters for Detection. Computer Vision – ECCV 2014. 10.1007/978-3-319-10590-1_6. (80-94).

    http://link.springer.com/10.1007/978-3-319-10590-1_6

  • Luo D, Ding C and Huang H. Parallelization with Multiplicative Algorithms for Big Data Mining. Proceedings of the 2012 IEEE 12th International Conference on Data Mining. (489-498).

    https://doi.org/10.1109/ICDM.2012.155

  • Ni W, Liu T and Zeng Q. Extracting keyphrase set with high diversity and coverage using structural SVM. Proceedings of the 14th Asia-Pacific international conference on Web Technologies and Applications. (122-133).

    https://doi.org/10.1007/978-3-642-29253-8_11

  • Sungrack Yun and Yoo C. (2012). Loss-Scaled Large-Margin Gaussian Mixture Models for Speech Emotion Classification. IEEE Transactions on Audio, Speech, and Language Processing. 20:2. (585-598). Online publication date: 1-Feb-2012.

    https://doi.org/10.1109/TASL.2011.2162405

  • Jiang X, Dong B and Sweeney L. Temporal maximum margin Markov network. Proceedings of the 2010 European conference on Machine learning and knowledge discovery in databases: Part I. (587-600).

    /doi/10.5555/1888258.1888303

  • Jiang X, Dong B and Sweeney L. Temporal Maximum Margin Markov Network. Proceedings of the 2010th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part I. (587-600).

    https://doi.org/10.1007/978-3-642-15880-3_43

  • Lampert C and Blaschko M. (2009). Structured prediction by joint kernel support estimation. Machine Language. 77:2-3. (249-269). Online publication date: 1-Dec-2009.

    https://doi.org/10.1007/s10994-009-5111-0