• Mercier C, Lescoat T, Roussillon P, Boubekeur T and Thiery J. (2022). Moving level-of-detail surfaces. ACM Transactions on Graphics. 41:4. (1-10). Online publication date: 1-Jul-2022.

    https://doi.org/10.1145/3528223.3530151

  • Mousa M and Hussein M. (2022). Toward high-performance computation of surface approximation using a GPU. Computers and Electrical Engineering. 99:C. Online publication date: 1-Apr-2022.

    https://doi.org/10.1016/j.compeleceng.2022.107761

  • Lejemble T, Coeurjolly D, Barthe L and Mellado N. (2021). Stable and efficient differential estimators on oriented point clouds. Computer Graphics Forum. 10.1111/cgf.14368. 40:5. (205-216). Online publication date: 1-Aug-2021.

    https://onlinelibrary.wiley.com/doi/10.1111/cgf.14368

  • Gross B, Trask N, Kuberry P and Atzberger P. (2020). Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: A Generalized Moving Least-Squares (GMLS) approach. Journal of Computational Physics. 10.1016/j.jcp.2020.109340. 409. (109340). Online publication date: 1-May-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0021999120301145

  • Morel J, Bac A and Kanai T. (2020). High Accuracy Terrain Reconstruction from Point Clouds Using Implicit Deformable Model. Computational Science – ICCS 2020. 10.1007/978-3-030-50433-5_20. (251-265).

    https://link.springer.com/10.1007/978-3-030-50433-5_20

  • Li X, Bull G, Coe R, Eamkulworapong S, Scarrow J, Salim M, Schaefer M and Sirault X. (2019). High-Throughput Plant Height Estimation from RGB Images Acquired with Aerial Platforms: A 3D Point Cloud Based Approach 2019 Digital Image Computing: Techniques and Applications (DICTA). 10.1109/DICTA47822.2019.8945911. 978-1-7281-3857-2. (1-8).

    https://ieeexplore.ieee.org/document/8945911/

  • Barill G, Dickson N, Schmidt R, Levin D and Jacobson A. (2018). Fast winding numbers for soups and clouds. ACM Transactions on Graphics. 37:4. (1-12). Online publication date: 31-Aug-2018.

    https://doi.org/10.1145/3197517.3201337

  • Digne J, Valette S and Chaine R. Sparse Geometric Representation Through Local Shape Probing. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2017.2719024. 24:7. (2238-2250).

    https://ieeexplore.ieee.org/document/7956272/

  • Buet B, Leonardi G and Masnou S. (2017). A Varifold Approach to Surface Approximation. Archive for Rational Mechanics and Analysis. 10.1007/s00205-017-1141-0. 226:2. (639-694). Online publication date: 1-Nov-2017.

    http://link.springer.com/10.1007/s00205-017-1141-0

  • Patan G. (2017). Mesh-based and meshless design and approximation of scalar functions. Computer Aided Geometric Design. 57:C. (23-43). Online publication date: 1-Oct-2017.

    https://doi.org/10.1016/j.cagd.2017.05.005

  • Patanè G and Spagnuolo M. (2016). Heterogenous Spatial Data: Fusion, Modeling, and Analysis for GIS Applications. Synthesis Lectures on Visual Computing. 10.2200/S00711ED1V01Y201603VCP024. 8:2. (1-155). Online publication date: 23-Apr-2016.

    http://www.morganclaypool.com/doi/10.2200/S00711ED1V01Y201603VCP024

  • Brunet P and Andújar C. (2015). Immersive Data Comprehension: Visualizing Uncertainty in Measurable Models. Frontiers in Robotics and AI. 10.3389/frobt.2015.00022. 2.

    http://journal.frontiersin.org/Article/10.3389/frobt.2015.00022/abstract

  • Sun Y, Schaefer S and Wang W. (2015). Denoising point sets via L 0 minimization. Computer Aided Geometric Design. 35:C. (2-15). Online publication date: 1-May-2015.

    https://doi.org/10.1016/j.cagd.2015.03.011

  • Calderon S and Boubekeur T. (2014). Point morphology. ACM Transactions on Graphics. 33:4. (1-13). Online publication date: 27-Jul-2014.

    https://doi.org/10.1145/2601097.2601130

  • Digne J and Morel J. (2014). Numerical analysis of differential operators on raw point clouds. Numerische Mathematik. 127:2. (255-289). Online publication date: 1-Jun-2014.

    https://doi.org/10.1007/s00211-013-0584-y

  • Amor B, Ardabilian M and Chen L. (2013). 3D Face Modeling. 3D Face Modeling, Analysis and Recognition. 10.1002/9781118592656.ch1. (1-37). Online publication date: 19-Jul-2013.

    https://onlinelibrary.wiley.com/doi/10.1002/9781118592656.ch1

  • Chen L. (2013). Digital-Discrete Methods for Data Reconstruction. Digital Functions and Data Reconstruction. 10.1007/978-1-4614-5638-4_8. (99-122).

    https://link.springer.com/10.1007/978-1-4614-5638-4_8

  • Weber C, Hahmann S, Hagen H and Bonneau G. (2012). Sharp feature preserving MLS surface reconstruction based on local feature line approximations. Graphical Models. 74:6. (335-345). Online publication date: 1-Nov-2012.

    https://doi.org/10.1016/j.gmod.2012.04.012

  • Ha I, Rhee T and Kim J. (2012). Smooth mesh generation from noisy depth image 2012 IEEE 1st Global Conference on Consumer Electronics (GCCE). 10.1109/GCCE.2012.6379669. 978-1-4673-1501-2. (495-497).

    http://ieeexplore.ieee.org/document/6379669/

  • He Z, Liang X and Zhao Q. A novel skeletonization and animation approach for point models. Transactions on Edutainment VII. (139-150).

    /doi/10.5555/2231115.2231129

  • Zheng C and Zhang H. Implicit Surface Reconstruction Based on Adaptive Clustering. Proceedings of the 2011 12th International Conference on Computer-Aided Design and Computer Graphics. (509-515).

    https://doi.org/10.1109/CAD/Graphics.2011.64

  • Shi L and Zhou D. (2011). Normal estimation on manifolds by gradient learning. Numerical Linear Algebra with Applications. 10.1002/nla.722. 18:2. (249-259). Online publication date: 1-Mar-2011.

    https://onlinelibrary.wiley.com/doi/10.1002/nla.722

  • Loménie N and Stamon G. (2011). Point Set Analysis. . 10.1016/B978-0-12-385985-3.00004-3. (255-294).

    http://linkinghub.elsevier.com/retrieve/pii/B9780123859853000043

  • Boyé S, Guennebaud G and Schlick C. (2010). Least Squares Subdivision Surfaces. Computer Graphics Forum. 10.1111/j.1467-8659.2010.01788.x. 29:7. (2021-2028). Online publication date: 1-Sep-2010.

    https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2010.01788.x

  • Nagai Y, Ohtake Y and Suzuki H. Smoothing of partition of unity implicit surfaces for noise robust surface reconstruction. Proceedings of the Symposium on Geometry Processing. (1339-1348).

    /doi/10.5555/1735603.1735615

  • Monterde J and Ugail H. (2015). A Comparative Study Between Biharmonic Bezier Surfaces and Biharmonic Extremal Surfaces. International Journal of Computers and Applications. 10.1080/1206212X.2009.11441929. 31:2. (90-96). Online publication date: 1-Jan-2009.

    https://www.tandfonline.com/doi/full/10.1080/1206212X.2009.11441929

  • Bradley D, Boubekeur T and Heidrich W. (2008). Accurate multi-view reconstruction using robust binocular stereo and surface meshing 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR.2008.4587792. 978-1-4244-2242-5. (1-8).

    http://ieeexplore.ieee.org/document/4587792/

  • Kolluri R. (2008). Provably good moving least squares. ACM Transactions on Algorithms. 4:2. (1-25). Online publication date: 1-May-2008.

    https://doi.org/10.1145/1361192.1361195

  • Wang J, Oliveira M, Zhang H and Kaufman A. (2008). Reconstructing regular meshes from points. The Visual Computer: International Journal of Computer Graphics. 24:5. (361-371). Online publication date: 25-Mar-2008.

    https://doi.org/10.1007/s00371-007-0194-8

  • Chen M, Correa C, Islam S, Jones M, Shen P, Silver D, Walton S and Willis P. (2007). Manipulating, Deforming and Animating Sampled Object Representations. Computer Graphics Forum. 10.1111/j.1467-8659.2007.01102.x. 26:4. (824-852). Online publication date: 1-Dec-2007.

    https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2007.01102.x

  • Yang Z and Kim T. (2007). Moving parabolic approximation of point clouds. Computer-Aided Design. 39:12. (1091-1112). Online publication date: 1-Dec-2007.

    https://doi.org/10.1016/j.cad.2007.08.005

  • Botsch M, Pauly M, Kobbelt L, Alliez P, Lévy B, Bischoff S and Rössl C. Geometric modeling based on polygonal meshes Video files associated with this course are available from the citation page. ACM SIGGRAPH 2007 courses. (1-es).

    https://doi.org/10.1145/1281500.1281640

  • Pighin F and Lewis J. Practical least-squares for computer graphics. ACM SIGGRAPH 2007 courses. (1-57).

    https://doi.org/10.1145/1281500.1281598

  • Sharf A, Lewiner T, Shklarski G, Toledo S and Cohen-Or D. Interactive topology-aware surface reconstruction. ACM SIGGRAPH 2007 papers. (43-es).

    https://doi.org/10.1145/1275808.1276431

  • Sharf A, Lewiner T, Shklarski G, Toledo S and Cohen-Or D. (2007). Interactive topology-aware surface reconstruction. ACM Transactions on Graphics. 26:3. (43-es). Online publication date: 29-Jul-2007.

    https://doi.org/10.1145/1276377.1276431

  • Gal R, Shamir A, Hassner T, Pauly M and Cohen-Or D. Surface reconstruction using local shape priors. Proceedings of the fifth Eurographics symposium on Geometry processing. (253-262).

    /doi/10.5555/1281991.1282025

  • Liu Y, Paul J, Yong J, Yu P, Zhang H, Sun J and Ramani K. (2006). Automatic least-squares projection of points onto point clouds with applications in reverse engineering. Computer-Aided Design. 38:12. (1251-1263). Online publication date: 1-Dec-2006.

    https://doi.org/10.1016/j.cad.2006.09.001

  • Qian G, Tong R, Peng W and Dong J. Bayesian mesh reconstruction from noisy point data. Proceedings of the 16th international conference on Advances in Artificial Reality and Tele-Existence. (819-829).

    https://doi.org/10.1007/11941354_85

  • Qian G, Tong R, Peng W and Dong J. (2006). An Efficient Method to Mesh Point Cloud 2006 10th International Conference on Computer Supported Cooperative Work in Design. 10.1109/CSCWD.2006.253088. 1-4244-0164-X. (1-5).

    http://ieeexplore.ieee.org/document/4019123/

  • Kindlmann G and Westin C. (2006). Diffusion Tensor Visualization with Glyph Packing. IEEE Transactions on Visualization and Computer Graphics. 12:5. (1329-1336). Online publication date: 1-Sep-2006.

    https://doi.org/10.1109/TVCG.2006.134

  • Botsch M, Pauly M, Rossl C, Bischoff S and Kobbelt L. Geometric modeling based on triangle meshes. ACM SIGGRAPH 2006 Courses. (1-es).

    https://doi.org/10.1145/1185657.1185839

  • Stoll C, Seidel H and Alexa M. BSP Shapes. Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006.

    https://doi.org/10.1109/SMI.2006.5

  • Kim S and Song C. Rendering of unorganized points with octagonal splats. Proceedings of the 6th international conference on Computational Science - Volume Part II. (326-333).

    https://doi.org/10.1007/11758525_43

  • Ilic S and Fua P. (2006). Implicit Meshes for Surface Reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence. 28:2. (328-333). Online publication date: 1-Feb-2006.

    https://doi.org/10.1109/TPAMI.2006.37

  • Tobor I, Reuter P and Schlick C. (2006). Reconstructing multi-scale variational partition of unity implicit surfaces with attributes. Graphical Models. 68:1. (25-41). Online publication date: 1-Jan-2006.

    https://doi.org/10.1016/j.gmod.2005.09.003

  • Dey T and Sun J. An adaptive MLS surface for reconstruction with guarantees. Proceedings of the third Eurographics symposium on Geometry processing. (43-es).

    /doi/10.5555/1281920.1281928

  • Reuter P, Joyot P, Trunzler J, Boubekeur T and Schlick C. Surface reconstruction with enriched reproducing kernel particle approximation. Proceedings of the Second Eurographics / IEEE VGTC conference on Point-Based Graphics. (79-87).

    /doi/10.5555/2386366.2386380

  • Dey T, Li G and Sun J. Normal estimation for point clouds. Proceedings of the Second Eurographics / IEEE VGTC conference on Point-Based Graphics. (39-46).

    /doi/10.5555/2386366.2386374

  • Wiley D, Amenta N, Alcantara D, Ghosh D, Kil Y, Delson E, Harcourt-Smith W, Rohlf F, St. John K and Hamann B. Evolutionary Morphing VIS 05. IEEE Visualization, 2005.. 10.1109/VISUAL.2005.1532826. 0-7803-9462-3. (431-438).

    http://ieeexplore.ieee.org/document/1532826/

  • Reuter P, Joyot P, Trunzler J, Boubekeur T and Schlick C. (2005). Surface reconstruction with enriched reproducing kernel particle approximation Point-Based Graphics 2005. 10.1109/PBG.2005.194068. 3-905673-20-7. (79-87).

    http://ieeexplore.ieee.org/document/1500322/

  • Dey T, Li G and Sun J. (2005). Normal estimation for point clouds: a comparison study for a Voronoi based method Point-Based Graphics 2005. 10.1109/PBG.2005.194062. 3-905673-20-7. (39-46).

    http://ieeexplore.ieee.org/document/1500316/

  • Guennebaud G, Barthe L and Paulin M. (2004). Dynamic surfel set refinement for high-quality rendering. Computers and Graphics. 28:6. (827-838). Online publication date: 1-Dec-2004.

    https://doi.org/10.1016/j.cag.2004.08.011

  • Mitra N, Gelfand N, Pottmann H and Guibas L. Registration of point cloud data from a geometric optimization perspective. Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. (22-31).

    https://doi.org/10.1145/1057432.1057435

  • Amenta N and Kil Y. The domain of a point set surface. Proceedings of the First Eurographics conference on Point-Based Graphics. (139-147).

    /doi/10.5555/2386332.2386356

  • Klein J and Zachmann G. Proximity graphs for defining surfaces over point clouds. Proceedings of the First Eurographics conference on Point-Based Graphics. (131-138).

    /doi/10.5555/2386332.2386355

  • Dalmasso P and Nerino R. Hierarchical 3D surface reconstruction based on radial basis functions Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.. 10.1109/TDPVT.2004.1335290. 0-7695-2223-8. (574-579).

    http://ieeexplore.ieee.org/document/1335290/