• Chirmeni Boujike M, Lonlac J, Tsopze N, Mephu Nguifo E and Pauline Fotso L. (2023). GRAPGT: GRAdual patterns with gradualness threshold. International Journal of General Systems. 10.1080/03081079.2022.2162049. 52:5. (525-545). Online publication date: 4-Jul-2023.

    https://www.tandfonline.com/doi/full/10.1080/03081079.2022.2162049

  • Yang T, Pasquier N and Precioso F. (2022). Semi-supervised consensus clustering based on closed patterns. Knowledge-Based Systems. 235:C. Online publication date: 10-Jan-2022.

    https://doi.org/10.1016/j.knosys.2021.107599

  • Come A and Lonlac J. (2021). Extracting Frequent (Closed) Seasonal Gradual Patterns Using Closed Itemset Mining 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). 10.1109/ICTAI52525.2021.00229. 978-1-6654-0898-1. (1442-1448).

    https://ieeexplore.ieee.org/document/9643301/

  • Mouakher A, Ragobert A, Gerin S and Ko A. (2021). Conceptual Coverage Driven by Essential Concepts: A Formal Concept Analysis Approach. Mathematics. 10.3390/math9212694. 9:21. (2694).

    https://www.mdpi.com/2227-7390/9/21/2694

  • Pasquier N and Chatterjee S. (2021). Customer Choice Modelling: A Multi-Level Consensus Clustering Approach. Annals of Emerging Technologies in Computing. 10.33166/AETiC.2021.02.009. 5:2. (103-120). Online publication date: 1-Apr-2021.

    http://aetic.theiaer.org/archive/v5/v5n2/p9.html

  • Berkani L. (2020). Decision support based on optimized data mining techniques: Application to mobile telecommunication companies. Concurrency and Computation: Practice and Experience. 10.1002/cpe.5833. 33:1. Online publication date: 10-Jan-2021.

    https://onlinelibrary.wiley.com/doi/10.1002/cpe.5833

  • Borah A and Nath B. (2020). Comparative evaluation of pattern mining techniques: an empirical study. Complex & Intelligent Systems. 10.1007/s40747-020-00226-4.

    http://link.springer.com/10.1007/s40747-020-00226-4

  • Lonlac J and Nguifo E. A novel algorithm for searching frequent gradual patterns from an ordered data set. Intelligent Data Analysis. 10.3233/IDA-194644. 24:5. (1029-1042).

    https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-194644

  • Chatterjee S and Pasquier N. (2020). A Multi-level Consensus Clustering Framework for Customer Choice Modelling in Travel Industry. Emerging Technologies in Computing. 10.1007/978-3-030-60036-5_10. (142-157).

    http://link.springer.com/10.1007/978-3-030-60036-5_10

  • Borah A and Nath B. (2019). Tree based frequent and rare pattern mining techniques: a comprehensive structural and empirical analysis. SN Applied Sciences. 10.1007/s42452-019-1043-x. 1:9. Online publication date: 1-Sep-2019.

    http://link.springer.com/10.1007/s42452-019-1043-x

  • Dong G. (2019). Exploiting the Power of Group Differences: Using Patterns to Solve Data Analysis Problems. Synthesis Lectures on Data Mining and Knowledge Discovery. 10.2200/S00897ED1V01Y201901DMK016. 11:1. (1-146). Online publication date: 22-Feb-2019.

    https://www.morganclaypool.com/doi/10.2200/S00897ED1V01Y201901DMK016

  • Tiogning Kueti L, Tsopze N, Mbiethieu C, Mephu-Nguifo E and Fotso L. (2018). Using Boolean factors for the construction of an artificial neural networks. International Journal of General Systems. 10.1080/03081079.2018.1524893. 47:8. (849-868). Online publication date: 17-Nov-2018.

    https://www.tandfonline.com/doi/full/10.1080/03081079.2018.1524893

  • Seki H and Nagao M. (2018). Parallel algorithms for enumerating closed patterns from multi-relational data. Discrete Applied Mathematics. 10.1016/j.dam.2018.03.080. 249. (120-134). Online publication date: 1-Nov-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0166218X18301884

  • Akther S, Rezaul Karim M, Samiullah M and Ahmed C. (2018). Mining non-redundant closed flexible periodic patterns. Engineering Applications of Artificial Intelligence. 10.1016/j.engappai.2017.11.005. 69. (1-23). Online publication date: 1-Mar-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0952197617302890

  • Hamed A, Kaffel-Ben Ayed H and Machfar D. (2017). Assessment for Android apps permissions a proactive approach toward privacy risk 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). 10.1109/IWCMC.2017.7986500. 978-1-5090-4372-9. (1465-1470).

    http://ieeexplore.ieee.org/document/7986500/

  • Hashem T, Rezaul Karim M, Samiullah M and Farhan Ahmed C. (2017). An efficient dynamic superset bit-vector approach for mining frequent closed itemsets and their lattice structure. Expert Systems with Applications: An International Journal. 67:C. (252-271). Online publication date: 1-Jan-2017.

    https://doi.org/10.1016/j.eswa.2016.09.023

  • Hamed A and Ben Ayed H. (2016). Privacy risk assessment and users' awareness for mobile apps permissions 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA). 10.1109/AICCSA.2016.7945694. 978-1-5090-4320-0. (1-8).

    http://ieeexplore.ieee.org/document/7945694/

  • Samet A, Lefèvre E and Ben Yahia S. (2016). Evidential data mining. Journal of Intelligent Information Systems. 47:1. (135-163). Online publication date: 1-Aug-2016.

    https://doi.org/10.1007/s10844-016-0396-5

  • Tiogning Kueti L, Tsopze N, Mbiethieu C, Mephu-Nguifo E and Fotso L. (2016). Boolean factors based Artificial Neural Network 2016 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2016.7727284. 978-1-5090-0620-5. (819-825).

    http://ieeexplore.ieee.org/document/7727284/

  • Hamed A and Ben Ayed H. (2016). Privacy risk assessment for Web tracking: A user-oriented approach toward privacy risk assessment for Web tracking 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). 10.1109/CCECE.2016.7726741. 978-1-4673-8721-7. (1-6).

    http://ieeexplore.ieee.org/document/7726741/

  • Nagao M and Seki H. (2015). Towards parallel mining of closed patterns from multi-relational data 2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA). 10.1109/IWCIA.2015.7449471. 978-1-4799-8842-6. (103-108).

    http://ieeexplore.ieee.org/document/7449471/

  • Vo B and Nguyen H. (2015). Mining frequent closed itemsets from multidimensional databases. International Journal of Computational Vision and Robotics. 5:3. (217-230). Online publication date: 1-Aug-2015.

    https://doi.org/10.1504/IJCVR.2015.071328

  • Aliberti G, Colantonio A, Di Pietro R and Mariani R. (2015). EXPEDITE. Expert Systems with Applications: An International Journal. 42:8. (3933-3944). Online publication date: 15-May-2015.

    https://doi.org/10.1016/j.eswa.2014.12.031

  • Ben Ayed H and Hamed A. (2014). Toward Proactive Mobile Tracking Management. International Journal of Information Security and Privacy. 8:4. (26-43). Online publication date: 1-Oct-2014.

    https://doi.org/10.4018/IJISP.2014100102

  • Bouker S, Saidi R, Ben Yahia S and Mephu Nguifo E. (2014). Mining Undominated Association Rules Through Interestingness Measures. International Journal on Artificial Intelligence Tools. 10.1142/S0218213014600112. 23:04. (1460011). Online publication date: 1-Aug-2014.

    http://www.worldscientific.com/doi/abs/10.1142/S0218213014600112

  • Spyropoulou E, De Bie T and Boley M. (2014). Interesting pattern mining in multi-relational data. Data Mining and Knowledge Discovery. 28:3. (808-849). Online publication date: 1-May-2014.

    https://doi.org/10.1007/s10618-013-0319-9

  • Mondal K and Pasquier N. (2013). Galois Closure Based Association Rule Mining From Biological Data. Biological Knowledge Discovery Handbook. 10.1002/9781118617151.ch35. (761-802). Online publication date: 16-Dec-2013.

    https://onlinelibrary.wiley.com/doi/10.1002/9781118617151.ch35

  • Duan L, Street W and Liu Y. (2013). Speeding up correlation search for binary data. Pattern Recognition Letters. 34:13. (1499-1507). Online publication date: 1-Oct-2013.

    https://doi.org/10.1016/j.patrec.2013.05.027

  • Vo B, Hong T and Le B. (2013). A lattice-based approach for mining most generalization association rules. Knowledge-Based Systems. 45. (20-30). Online publication date: 1-Jun-2013.

    https://doi.org/10.1016/j.knosys.2013.02.003

  • Kuznetsov S and Poelmans J. (2013). Knowledge representation and processing with formal concept analysis. WIREs Data Mining and Knowledge Discovery. 10.1002/widm.1088. 3:3. (200-215). Online publication date: 1-May-2013.

    https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1088

  • Hamrouni T, Ben Yahia S and Mephu Nguifo E. (2013). Looking for a structural characterization of the sparseness measure of (frequent closed) itemset contexts. Information Sciences: an International Journal. 222. (343-361). Online publication date: 1-Feb-2013.

    https://doi.org/10.1016/j.ins.2012.08.005

  • Naidenova X. (2013). An Analytical Survey of Current Approaches to Mining Logical Rules from Data. Diagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems. 10.4018/978-1-4666-1900-5.ch004. (71-101).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-1900-5.ch004

  • Latiri C, Haddad H and Hamrouni T. (2012). Towards an effective automatic query expansion process using an association rule mining approach. Journal of Intelligent Information Systems. 39:1. (209-247). Online publication date: 1-Aug-2012.

    https://doi.org/10.1007/s10844-011-0189-9

  • Mondal K, Pasquier N, Mukhopadhyay A, Maulik U and Bandhopadyay S. A new approach for association rule mining and bi-clustering using formal concept analysis. Proceedings of the 8th international conference on Machine Learning and Data Mining in Pattern Recognition. (86-101).

    https://doi.org/10.1007/978-3-642-31537-4_8

  • Hamrouni T. (2012). Key roles of closed sets and minimal generators in concise representations of frequent patterns. Intelligent Data Analysis. 16:4. (581-631). Online publication date: 1-Jul-2012.

    /doi/10.5555/2595513.2595517

  • Vo B, Hong T and Le B. (2012). DBV-Miner. Expert Systems with Applications: An International Journal. 39:8. (7196-7206). Online publication date: 1-Jun-2012.

    https://doi.org/10.1016/j.eswa.2012.01.062

  • Ferjani F, Elloumi S, Jaoua A, Ben Yahia S, Ismail S and Ravan S. (2012). Formal context coverage based on isolated labels. Information Sciences: an International Journal. 188. (198-214). Online publication date: 1-Apr-2012.

    https://doi.org/10.1016/j.ins.2011.10.023

  • Moerchen F, Thies M and Ultsch A. (2011). Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowledge and Information Systems. 29:1. (55-80). Online publication date: 1-Oct-2011.

    https://doi.org/10.1007/s10115-010-0329-5

  • Vo B, Le B and Nguyen T. Mining frequent itemsets from multidimensional databases. Proceedings of the Third international conference on Intelligent information and database systems - Volume Part I. (177-186).

    /doi/10.5555/1997166.1997187

  • Takigawa I and Mamitsuka H. (2011). Efficiently mining ź-tolerance closed frequent subgraphs. Machine Language. 82:2. (95-121). Online publication date: 1-Feb-2011.

    https://doi.org/10.1007/s10994-010-5215-6

  • Imberman S and Uz Tansel A. Frequent Itemset Mining and Association Rules. Encyclopedia of Knowledge Management, Second Edition. 10.4018/978-1-59904-931-1.ch033. (343-353).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59904-931-1.ch033

  • Vo B and Le B. (2011). Mining minimal non-redundant association rules using frequent itemsets lattice. International Journal of Intelligent Systems Technologies and Applications. 10:1. (92-106). Online publication date: 1-Jan-2011.

    https://doi.org/10.1504/IJISTA.2011.038265

  • Vo B, Le B and Nguyen T. (2011). Mining Frequent Itemsets from Multidimensional Databases. Intelligent Information and Database Systems. 10.1007/978-3-642-20039-7_18. (177-186).

    http://link.springer.com/10.1007/978-3-642-20039-7_18

  • Younes N, Hamrouni T and Yahia S. Bridging conjunctive and disjunctive search spaces for mining a new concise and exact representation of correlated patterns. Proceedings of the 13th international conference on Discovery science. (189-204).

    /doi/10.5555/1927300.1927314

  • Gupta A, Bhatnagar V and Kumar N. Mining closed itemsets in data stream using formal concept analysis. Proceedings of the 12th international conference on Data warehousing and knowledge discovery. (285-296).

    /doi/10.5555/1881923.1881953

  • Ruggieri S. Frequent regular itemset mining. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. (263-272).

    https://doi.org/10.1145/1835804.1835840

  • Younes N, Hamrouni T and Yahia S. (2010). Bridging Conjunctive and Disjunctive Search Spaces for Mining a New Concise and Exact Representation of Correlated Patterns. Discovery Science. 10.1007/978-3-642-16184-1_14. (189-204).

    http://link.springer.com/10.1007/978-3-642-16184-1_14

  • Gupta A, Bhatnagar V and Kumar N. (2010). Mining Closed Itemsets in Data Stream Using Formal Concept Analysis. Data Warehousing and Knowledge Discovery. 10.1007/978-3-642-15105-7_23. (285-296).

    http://link.springer.com/10.1007/978-3-642-15105-7_23

  • Vo B and Le B. (2010). Mining the Most Generalization Association Rules. Advances in Intelligent Information and Database Systems. 10.1007/978-3-642-12090-9_18. (207-216).

    http://link.springer.com/10.1007/978-3-642-12090-9_18

  • Yahia S, Gasmi G and Nguifo E. (2009). A new generic basis of "factual" and "implicative" association rules. Intelligent Data Analysis. 13:4. (633-656). Online publication date: 1-Dec-2009.

    /doi/10.5555/1609910.1609917

  • Hamrouni T. (2009). Mining concise representations of frequent patterns through conjunctive and disjunctive search spaces. ACM SIGKDD Explorations Newsletter. 11:1. (57-58). Online publication date: 16-Nov-2009.

    https://doi.org/10.1145/1656274.1656288

  • Waddey M, Poncelet P and Ben Yahia S. A novel approach for privacy mining of generic basic association rules. Proceedings of the ACM first international workshop on Privacy and anonymity for very large databases. (45-52).

    https://doi.org/10.1145/1651449.1651459

  • Hamrouni T, Ben Yahia S and Mephu Nguifo E. (2009). Sweeping the disjunctive search space towards mining new exact concise representations of frequent itemsets. Data & Knowledge Engineering. 68:10. (1091-1111). Online publication date: 1-Oct-2009.

    https://doi.org/10.1016/j.datak.2009.05.001

  • Gharib T. (2009). An efficient algorithm for mining frequent maximal and closed itemsets. International Journal of Hybrid Intelligent Systems. 6:3. (147-153). Online publication date: 1-Aug-2009.

    /doi/10.5555/1735964.1735967

  • Wei Song and Jin-Hong Li . (2009). Mining concise Association Rules based on generators and closed itemsets 2009 International Conference on Machine Learning and Cybernetics (ICMLC). 10.1109/ICMLC.2009.5212488. 978-1-4244-3702-3. (249-255).

    http://ieeexplore.ieee.org/document/5212488/

  • Vo B and Le B. (2009). Fast algorithm for mining minimal generators of frequent closed itemsets and their applications Industrial Engineering (CIE39). 10.1109/ICCIE.2009.5223846. 978-1-4244-4135-8. (1407-1411).

    http://ieeexplore.ieee.org/document/5223846/

  • Amphawan K, Lenca P and Surarerks A. (2009). Mining Top-K Periodic-Frequent Pattern from Transactional Databases without Support Threshold. Advances in Information Technology. 10.1007/978-3-642-10392-6_3. (18-29).

    http://link.springer.com/10.1007/978-3-642-10392-6_3

  • Song W, Yang B and Xu Z. (2008). Index-CloseMiner: An improved algorithm for mining frequent closed itemset. Intelligent Data Analysis. 12:4. (321-338). Online publication date: 1-Nov-2008.

    /doi/10.5555/1408960.1408962

  • Chen J, Zhou B, Chen L, Wang X and Ding Y. (2008). Finding Frequent Closed Itemsets in Sliding Window in Linear Time. IEICE - Transactions on Information and Systems. E91-D:10. (2406-2418). Online publication date: 1-Oct-2008.

    https://doi.org/10.1093/ietisy/e91-d.10.2406

  • Chen J, Zhou B, Yiqun Ding and Lu Chen . (2008). DTGC-Tree: A new strategy of association rules mining 2008 International Conference on Machine Learning and Cybernetics (ICMLC). 10.1109/ICMLC.2008.4620412. 978-1-4244-2095-7. (245-250).

    http://ieeexplore.ieee.org/document/4620412/

  • Lee A, Wang C, Weng W, Chen Y and Wu H. (2008). An efficient algorithm for mining closed inter-transaction itemsets. Data & Knowledge Engineering. 66:1. (68-91). Online publication date: 1-Jul-2008.

    https://doi.org/10.1016/j.datak.2008.02.001

  • HAMROUNI T, BEN YAHIA S and MEPHU NGUIFO E. (2008). SUCCINCT MINIMAL GENERATORS: THEORETICAL FOUNDATIONS AND APPLICATIONS. International Journal of Foundations of Computer Science. 10.1142/S0129054108005681. 19:02. (271-296). Online publication date: 1-Apr-2008.

    http://www.worldscientific.com/doi/abs/10.1142/S0129054108005681

  • Meng-Fen Chiang , Wen-Chih Peng and Chia-Hao Lo . (2008). Discovering popular co-cited communities in blogspaces 2008 IEEE 24th International Conference on Data Engineeing workshop (ICDE Workshop 2008). 10.1109/ICDEW.2008.4498372. 978-1-4244-2161-9. (519-524).

    http://ieeexplore.ieee.org/document/4498372/

  • Chen J and Zhou B. TGC-tree. Proceedings of the 3rd international conference on Large-scale knowledge resources: construction and application. (38-50).

    /doi/10.5555/1787800.1787806

  • Chen J and Zhou B. TGC-Tree: An Online Algorithm Tracing Closed Itemset and Transaction Set Simultaneously. Large-Scale Knowledge Resources. Construction and Application. 10.1007/978-3-540-78159-2_4. (38-50).

    http://link.springer.com/10.1007/978-3-540-78159-2_4

  • Mörchen F and Ultsch A. (2007). Efficient mining of understandable patterns from multivariate interval time series. Data Mining and Knowledge Discovery. 15:2. (181-215). Online publication date: 1-Oct-2007.

    https://doi.org/10.1007/s10618-007-0070-1

  • Stamatatos E. Author Identification Using Imbalanced and Limited Training Texts. Proceedings of the 18th International Conference on Database and Expert Systems Applications. (237-241).

    https://doi.org/10.1109/DEXA.2007.41

  • Chen J and Li S. GC-tree. Proceedings of the 2007 international conference on Emerging technologies in knowledge discovery and data mining. (457-468).

    /doi/10.5555/1780582.1780630

  • Chen J and Li S. GC-Tree: A Fast Online Algorithm for Mining Frequent Closed Itemsets. Emerging Technologies in Knowledge Discovery and Data Mining. 10.1007/978-3-540-77018-3_45. (457-468).

    http://link.springer.com/10.1007/978-3-540-77018-3_45

  • Gallo A and Meo R. Using a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets. Knowledge Discovery in Inductive Databases. 10.1007/978-3-540-75549-4_7. (97-115).

    http://link.springer.com/10.1007/978-3-540-75549-4_7

  • Hamrouni T, Yahia S and Nguifo E. Succinct system of minimal generators. Proceedings of the 4th international conference on Concept lattices and their applications. (80-95).

    /doi/10.5555/1793623.1793630

  • Hamrouni T, Ben Yahia S and Mephu Nguifo E. Succinct System of Minimal Generators: A Thorough Study, Limitations and New Definitions. Concept Lattices and Their Applications. (80-95).

    https://doi.org/10.1007/978-3-540-78921-5_5

  • Gallo A and Meo R. Using a reinforced concept lattice to incrementally mine association rules from closed itemsets. Proceedings of the 5th international conference on Knowledge discovery in inductive databases. (97-115).

    /doi/10.5555/1777194.1777203