• Salihu N, Kumam P, Sulaiman I, Arzuka I and Kumam W. (2024). An efficient Newton-like conjugate gradient method with restart strategy and its application. Mathematics and Computers in Simulation. 226:C. (354-372). Online publication date: 1-Dec-2024.

    https://doi.org/10.1016/j.matcom.2024.07.008

  • Rao J, Yu C and Huang N. (2024). Stabilized BB projection algorithm for large-scale convex constrained nonlinear monotone equations to signal and image processing problems. Journal of Computational and Applied Mathematics. 448:C. Online publication date: 1-Oct-2024.

    https://doi.org/10.1016/j.cam.2024.115916

  • Lara H, Aleixo R and Oviedo H. (2024). Delayed Weighted Gradient Method with simultaneous step-sizes for strongly convex optimization. Computational Optimization and Applications. 89:1. (151-182). Online publication date: 1-Sep-2024.

    https://doi.org/10.1007/s10589-024-00586-4

  • Zhang K, Zhang H and Wang X. (2024). A hybrid complex spectral conjugate gradient learning algorithm for complex-valued data processing. Engineering Applications of Artificial Intelligence. 133:PD. Online publication date: 1-Jul-2024.

    https://doi.org/10.1016/j.engappai.2024.108352

  • Li S, Zhang T and Xia Y. (2024). A family of Barzilai-Borwein steplengths from the viewpoint of scaled total least squares. Computational Optimization and Applications. 87:3. (1011-1031). Online publication date: 1-Apr-2024.

    https://doi.org/10.1007/s10589-023-00546-4

  • Guo J and Wan Z. (2024). An efficient modified residual-based algorithm for large scale symmetric nonlinear equations by approximating successive iterated gradients. Journal of Computational and Applied Mathematics. 438:C. Online publication date: 1-Mar-2024.

    https://doi.org/10.1016/j.cam.2023.115552

  • Li D, Wang S, Li Y and Wu J. (2024). A convergence analysis of hybrid gradient projection algorithm for constrained nonlinear equations with applications in compressed sensing. Numerical Algorithms. 95:3. (1325-1345). Online publication date: 1-Mar-2024.

    https://doi.org/10.1007/s11075-023-01610-0

  • Tang T and Toh K. (2024). Solving graph equipartition SDPs on an algebraic variety. Mathematical Programming: Series A and B. 204:1-2. (299-347). Online publication date: 1-Mar-2024.

    https://doi.org/10.1007/s10107-023-01952-6

  • Tang T and Toh K. (2024). A Feasible Method for Solving an SDP Relaxation of the Quadratic Knapsack Problem. Mathematics of Operations Research. 49:1. (19-39). Online publication date: 1-Feb-2024.

    https://doi.org/10.1287/moor.2022.1345

  • Ferrandi G and Hochstenbach M. (2024). A homogeneous Rayleigh quotient with applications in gradient methods. Journal of Computational and Applied Mathematics. 437:C. Online publication date: 1-Feb-2024.

    https://doi.org/10.1016/j.cam.2023.115440

  • Jalilian H. (2024). Total variation method based on modified Barzilai–Borwein algorithm to noise reduction in MRI images. The Journal of Supercomputing. 80:1. (601-619). Online publication date: 1-Jan-2024.

    https://doi.org/10.1007/s11227-023-05500-z

  • Galli L, Rauhut H and Schmidt M. Don't be so monotone. Proceedings of the 37th International Conference on Neural Information Processing Systems. (34752-34764).

    /doi/10.5555/3666122.3667631

  • Arias C and Gómez C. (2023). Inexact free derivative quasi-Newton method for large-scale nonlinear system of equations. Numerical Algorithms. 94:3. (1103-1123). Online publication date: 1-Nov-2023.

    https://doi.org/10.1007/s11075-023-01529-6

  • Kunisch K and Vásquez-Varas D. (2023). Optimal polynomial feedback laws for finite horizon control problems. Computers & Mathematics with Applications. 148:C. (113-125). Online publication date: 15-Oct-2023.

    https://doi.org/10.1016/j.camwa.2023.08.004

  • Wang Y, Shen C, Zhang L and Yang W. (2023). Proximal Gradient/Semismooth Newton Methods for Projection onto a Polyhedron via the Duality-Gap-Active-Set Strategy. Journal of Scientific Computing. 97:1. Online publication date: 1-Oct-2023.

    https://doi.org/10.1007/s10915-023-02302-6

  • Ferrandi G, Hochstenbach M and Krejić N. (2023). A harmonic framework for stepsize selection in gradient methods. Computational Optimization and Applications. 85:1. (75-106). Online publication date: 1-May-2023.

    https://doi.org/10.1007/s10589-023-00455-6

  • Jia X, Kanzow C, Mehlitz P and Wachsmuth G. (2022). An augmented Lagrangian method for optimization problems with structured geometric constraints. Mathematical Programming: Series A and B. 199:1-2. (1365-1415). Online publication date: 1-May-2023.

    https://doi.org/10.1007/s10107-022-01870-z

  • Mohammad H and Danmalam K. (2023). Structured spectral algorithm with a nonmonotone line search for nonlinear least squares. Applied Numerical Mathematics. 184:C. (285-300). Online publication date: 1-Feb-2023.

    https://doi.org/10.1016/j.apnum.2022.10.008

  • Ivanov B, Milovanović G and Stanimirović P. (2022). Accelerated Dai-Liao projection method for solving systems of monotone nonlinear equations with application to image deblurring. Journal of Global Optimization. 85:2. (377-420). Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s10898-022-01213-4

  • Andreani R, Oviedo H, Raydan M and Secchin L. (2022). An extended delayed weighted gradient algorithm for solving strongly convex optimization problems. Journal of Computational and Applied Mathematics. 416:C. Online publication date: 15-Dec-2022.

    https://doi.org/10.1016/j.cam.2022.114525

  • La Cruz W. (2022). A genetic algorithm with a self-reproduction operator to solve systems of nonlinear equations. Journal of Global Optimization. 84:4. (1005-1032). Online publication date: 1-Dec-2022.

    https://doi.org/10.1007/s10898-022-01189-1

  • Marčeta M and Lukić T. (2022). Regularized graph cuts based discrete tomography reconstruction methods. Journal of Combinatorial Optimization. 44:4. (2324-2346). Online publication date: 1-Nov-2022.

    https://doi.org/10.1007/s10878-021-00730-4

  • Jiang B, Liu Y, Zeng X and Wang W. (2022). A new nonconvex relaxation approach for low tubal rank tensor recovery. Digital Signal Processing. 130:C. Online publication date: 1-Oct-2022.

    https://doi.org/10.1016/j.dsp.2022.103741

  • La Cruz W. (2022). An extended projected residual algorithm for solving smooth convex optimization problems. Journal of Computational and Applied Mathematics. 412:C. Online publication date: 1-Oct-2022.

    https://doi.org/10.1016/j.cam.2022.114350

  • Lu Z, Sun Z and Zhou Z. (2022). Penalty and Augmented Lagrangian Methods for Constrained DC Programming. Mathematics of Operations Research. 47:3. (2260-2285). Online publication date: 1-Aug-2022.

    https://doi.org/10.1287/moor.2021.1207

  • Schäpermeier L, Grimme C and Kerschke P. MOLE. Proceedings of the Genetic and Evolutionary Computation Conference. (592-600).

    https://doi.org/10.1145/3512290.3528793

  • Castera C, Bolte J, Févotte C and Pauwels E. (2022). Second-Order Step-Size Tuning of SGD for Non-Convex Optimization. Neural Processing Letters. 54:3. (1727-1752). Online publication date: 1-Jun-2022.

    https://doi.org/10.1007/s11063-021-10705-5

  • Fatemi M. (2022). On initial point selection of the steepest descent algorithm for general quadratic functions. Computational Optimization and Applications. 82:2. (329-360). Online publication date: 1-Jun-2022.

    https://doi.org/10.1007/s10589-022-00372-0

  • Tankaria H, Sugimoto S and Yamashita N. (2022). A regularized limited memory BFGS method for large-scale unconstrained optimization and its efficient implementations. Computational Optimization and Applications. 82:1. (61-88). Online publication date: 1-May-2022.

    https://doi.org/10.1007/s10589-022-00351-5

  • Li D, Wang X and Huang J. (2022). Diagonal BFGS updates and applications to the limited memory BFGS method. Computational Optimization and Applications. 81:3. (829-856). Online publication date: 1-Apr-2022.

    https://doi.org/10.1007/s10589-022-00353-3

  • Huang Y, Dai Y, Liu X and Zhang H. (2022). On the acceleration of the Barzilai–Borwein method. Computational Optimization and Applications. 81:3. (717-740). Online publication date: 1-Apr-2022.

    https://doi.org/10.1007/s10589-022-00349-z

  • Meli E, Morini B, Porcelli M and Sgattoni C. (2022). Solving Nonlinear Systems of Equations Via Spectral Residual Methods: Stepsize Selection and Applications. Journal of Scientific Computing. 90:1. Online publication date: 1-Jan-2022.

    https://doi.org/10.1007/s10915-021-01690-x

  • Huang Y, Dai Y, Liu X and Zhang H. (2022). On the Asymptotic Convergence and Acceleration of Gradient Methods. Journal of Scientific Computing. 90:1. Online publication date: 1-Jan-2022.

    https://doi.org/10.1007/s10915-021-01685-8

  • Huang N. (2022). On R-linear convergence analysis for a class of gradient methods. Computational Optimization and Applications. 81:1. (161-177). Online publication date: 1-Jan-2022.

    https://doi.org/10.1007/s10589-021-00333-z

  • Richards D, Negahban S and Rebeschini P. Distributed machine learning with sparse heterogeneous data. Proceedings of the 35th International Conference on Neural Information Processing Systems. (18008-18020).

    /doi/10.5555/3540261.3541639

  • Ke Y and Ma C. (2021). Prediction-correction matrix splitting iteration algorithm for a class of large and sparse linear systems. Applied Numerical Mathematics. 169:C. (256-272). Online publication date: 1-Nov-2021.

    https://doi.org/10.1016/j.apnum.2021.07.004

  • Bellavia S, Gondzio J and Porcelli M. (2021). A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion. Journal of Scientific Computing. 89:2. Online publication date: 1-Nov-2021.

    https://doi.org/10.1007/s10915-021-01654-1

  • Li Q and Zheng B. (2021). Scaled three-term derivative-free methods for solving large-scale nonlinear monotone equations. Numerical Algorithms. 87:3. (1343-1367). Online publication date: 1-Jul-2021.

    https://doi.org/10.1007/s11075-020-01010-8

  • Oviedo H, Dalmau O and Lara H. (2021). Two adaptive scaled gradient projection methods for Stiefel manifold constrained optimization. Numerical Algorithms. 87:3. (1107-1127). Online publication date: 1-Jul-2021.

    https://doi.org/10.1007/s11075-020-01001-9

  • de Oliveira F and Oliveira F. (2021). A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds. Journal of Optimization Theory and Applications. 190:1. (259-273). Online publication date: 1-Jul-2021.

    https://doi.org/10.1007/s10957-021-01881-4

  • Zhou W. (2021). A class of line search-type methods for nonsmooth convex regularized minimization. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 25:10. (7131-7141). Online publication date: 1-May-2021.

    https://doi.org/10.1007/s00500-021-05672-x

  • Yipu Zhao , Yuanfang Wang and Yichang Tsai . 2D-image to 3D-range registration in urban environments via scene categorization and combination of similarity measurements. 2016 IEEE International Conference on Robotics and Automation (ICRA). (1866-1872).

    https://doi.org/10.1109/ICRA.2016.7487332

  • Lemoine J, Münch A and Pedregal P. (2021). Analysis of Continuous -Least-Squares Methods for the Steady Navier–Stokes System. Applied Mathematics and Optimization. 83:1. (461-488). Online publication date: 1-Feb-2021.

    https://doi.org/10.1007/s00245-019-09554-5

  • Alexandropoulos S, Pardalos P and Vrahatis M. (2020). Dynamic search trajectory methods for global optimization. Annals of Mathematics and Artificial Intelligence. 88:1-3. (3-37). Online publication date: 1-Mar-2020.

    https://doi.org/10.1007/s10472-019-09661-7

  • Wu L. (2020). A residual-based algorithm for solving a class of structured nonsmooth optimization problems. Journal of Global Optimization. 76:1. (137-153). Online publication date: 1-Jan-2020.

    https://doi.org/10.1007/s10898-019-00776-z

  • Galli L, Galligari A and Sciandrone M. (2020). A unified convergence framework for nonmonotone inexact decomposition methods. Computational Optimization and Applications. 75:1. (113-144). Online publication date: 1-Jan-2020.

    https://doi.org/10.1007/s10589-019-00150-5

  • Crisci S, Ruggiero V and Zanni L. (2019). Steplength selection in gradient projection methods for box-constrained quadratic programs. Applied Mathematics and Computation. 356:C. (312-327). Online publication date: 1-Sep-2019.

    https://doi.org/10.1016/j.amc.2019.03.039

  • Dehghani R and Mahdavi-Amiri N. (2019). Scaled nonlinear conjugate gradient methods for nonlinear least squares problems. Numerical Algorithms. 82:1. (1-20). Online publication date: 1-Sep-2019.

    https://doi.org/10.1007/s11075-018-0591-2

  • Dai Y, Huang Y and Liu X. (2019). A family of spectral gradient methods for optimization. Computational Optimization and Applications. 74:1. (43-65). Online publication date: 1-Sep-2019.

    https://doi.org/10.1007/s10589-019-00107-8

  • Faramarzi P and Amini K. (2019). A Modified Spectral Conjugate Gradient Method with Global Convergence. Journal of Optimization Theory and Applications. 182:2. (667-690). Online publication date: 1-Aug-2019.

    https://doi.org/10.1007/s10957-019-01527-6

  • Xu Z and Gao L. (2019). The Uzawa-MBB type algorithm for nonsymmetric saddle point problems. Computational Optimization and Applications. 73:3. (933-956). Online publication date: 1-Jul-2019.

    https://doi.org/10.1007/s10589-019-00094-w

  • Berger A, Ettlin G, Quincke C and Rodríguez-Bocca P. (2019). Predicting the Normalized Difference Vegetation Index (NDVI) by training a crop growth model with historical data. Computers and Electronics in Agriculture. 161:C. (305-311). Online publication date: 1-Jun-2019.

    https://doi.org/10.1016/j.compag.2018.04.028

  • Abubakar A and Kumam P. (2019). A descent Dai-Liao conjugate gradient method for nonlinear equations. Numerical Algorithms. 81:1. (197-210). Online publication date: 1-May-2019.

    https://doi.org/10.1007/s11075-018-0541-z

  • Liu Z and Liu H. (2019). An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization. Journal of Optimization Theory and Applications. 181:2. (608-633). Online publication date: 1-May-2019.

    https://doi.org/10.1007/s10957-019-01475-1

  • Yu G, Song Y, Xu Y and Yu Z. (2019). Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems. Numerical Algorithms. 80:4. (1181-1201). Online publication date: 1-Apr-2019.

    https://doi.org/10.1007/s11075-018-0522-2

  • Mohammad H and Waziri M. (2019). Structured Two-Point Stepsize Gradient Methods for Nonlinear Least Squares. Journal of Optimization Theory and Applications. 181:1. (298-317). Online publication date: 1-Apr-2019.

    https://doi.org/10.1007/s10957-018-1434-y

  • Liu H and Liu Z. (2019). An Efficient Barzilai---Borwein Conjugate Gradient Method for Unconstrained Optimization. Journal of Optimization Theory and Applications. 180:3. (879-906). Online publication date: 1-Mar-2019.

    https://doi.org/10.1007/s10957-018-1393-3

  • Esmaeili H, Shabani S and Kimiaei M. (2019). A new generalized shrinkage conjugate gradient method for sparse recovery. Calcolo: a quarterly on numerical analysis and theory of computation. 56:1. (1-38). Online publication date: 1-Mar-2019.

    https://doi.org/10.1007/s10092-018-0296-x

  • Li M, Liu H and Liu Z. (2018). A new subspace minimization conjugate gradient method with nonmonotone line search for unconstrained optimization. Numerical Algorithms. 79:1. (195-219). Online publication date: 1-Sep-2018.

    https://doi.org/10.1007/s11075-017-0434-6

  • Liu Z and Liu H. (2018). An efficient gradient method with approximate optimal stepsize for large-scale unconstrained optimization. Numerical Algorithms. 78:1. (21-39). Online publication date: 1-May-2018.

    https://doi.org/10.1007/s11075-017-0365-2

  • Huang S, Wan Z and Zhang J. (2018). An extended nonmonotone line search technique for large-scale unconstrained optimization. Journal of Computational and Applied Mathematics. 330:C. (586-604). Online publication date: 1-Mar-2018.

    https://doi.org/10.1016/j.cam.2017.09.026

  • di Serafino D, Ruggiero V, Toraldo G and Zanni L. (2018). On the steplength selection in gradient methods for unconstrained optimization. Applied Mathematics and Computation. 318:C. (176-195). Online publication date: 1-Feb-2018.

    https://doi.org/10.1016/j.amc.2017.07.037

  • Zhou R, Shen X and Niu L. (2018). A fast algorithm for nonsmooth penalized clustering. Neurocomputing. 273:C. (583-592). Online publication date: 17-Jan-2018.

    https://doi.org/10.1016/j.neucom.2017.08.048

  • Liu Z and Liu H. (2018). Several efficient gradient methods with approximate optimal stepsizes for large scale unconstrained optimization. Journal of Computational and Applied Mathematics. 328:C. (400-413). Online publication date: 15-Jan-2018.

    https://doi.org/10.1016/j.cam.2017.07.035

  • Kresoja M, LuźAnin Z and Stojkovska I. (2017). Adaptive stochastic approximation algorithm. Numerical Algorithms. 76:4. (917-937). Online publication date: 1-Dec-2017.

    https://doi.org/10.1007/s11075-017-0290-4

  • Porta F, Cornelio A and Ruggiero V. (2017). RungeKutta-like scaling techniques for first-order methods in convex optimization. Applied Numerical Mathematics. 116:C. (256-272). Online publication date: 1-Jun-2017.

    https://doi.org/10.1016/j.apnum.2016.08.011

  • Kalousek Z. (2017). Steepest Descent Method with Random Step Lengths. Foundations of Computational Mathematics. 17:2. (359-422). Online publication date: 1-Apr-2017.

    https://doi.org/10.1007/s10208-015-9290-8

  • Wang L and Chen S. (2017). Joint representation classification for collective face recognition. Pattern Recognition. 63:C. (182-192). Online publication date: 1-Mar-2017.

    https://doi.org/10.1016/j.patcog.2016.10.004

  • Tarzanagh D and Michailidis G. (2017). Estimation of graphical models through structured norm minimization. The Journal of Machine Learning Research. 18:1. (7692-7739). Online publication date: 1-Jan-2017.

    /doi/10.5555/3122009.3242066

  • Huang Y and Liu H. (2016). Smoothing projected Barzilai---Borwein method for constrained non-Lipschitz optimization. Computational Optimization and Applications. 65:3. (671-698). Online publication date: 1-Dec-2016.

    https://doi.org/10.1007/s10589-016-9854-9

  • Gonzaga C. (2016). On the worst case performance of the steepest descent algorithm for quadratic functions. Mathematical Programming: Series A and B. 160:1-2. (307-320). Online publication date: 1-Nov-2016.

    https://doi.org/10.1007/s10107-016-0984-8

  • Gonçalves D and Santos S. (2016). Local analysis of a spectral correction for the Gauss-Newton model applied to quadratic residual problems. Numerical Algorithms. 73:2. (407-431). Online publication date: 1-Oct-2016.

    https://doi.org/10.1007/s11075-016-0101-3

  • Wu L, Sun Z and Li D. (2016). A Barzilai---Borwein-Like Iterative Half Thresholding Algorithm for the $$L_{1/2}$$L1/2 Regularized Problem. Journal of Scientific Computing. 67:2. (581-601). Online publication date: 1-May-2016.

    https://doi.org/10.1007/s10915-015-0094-4

  • Gonzaga C and Schneider R. (2016). On the steepest descent algorithm for quadratic functions. Computational Optimization and Applications. 63:2. (523-542). Online publication date: 1-Mar-2016.

    https://doi.org/10.1007/s10589-015-9775-z

  • Huang Y, Liu H and Zhou S. (2015). Quadratic regularization projected Barzilai---Borwein method for nonnegative matrix factorization. Data Mining and Knowledge Discovery. 29:6. (1665-1684). Online publication date: 1-Nov-2015.

    https://doi.org/10.1007/s10618-014-0390-x

  • Jiang B and Dai Y. (2015). A framework of constraint preserving update schemes for optimization on Stiefel manifold. Mathematical Programming: Series A and B. 153:2. (535-575). Online publication date: 1-Nov-2015.

    https://doi.org/10.1007/s10107-014-0816-7

  • Papp Z and Rapajić S. (2015). FR type methods for systems of large-scale nonlinear monotone equations. Applied Mathematics and Computation. 269:C. (816-823). Online publication date: 15-Oct-2015.

    https://doi.org/10.1016/j.amc.2015.08.002

  • Yuan G and Zhang M. (2015). A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations. Journal of Computational and Applied Mathematics. 286:C. (186-195). Online publication date: 1-Oct-2015.

    https://doi.org/10.1016/j.cam.2015.03.014

  • Huang Y and Liu H. (2015). A Barzilai-Borwein type method for minimizing composite functions. Numerical Algorithms. 69:4. (819-838). Online publication date: 1-Aug-2015.

    /doi/10.5555/2812891.2813403

  • Harms N, Hoheisel T and Kanzow C. (2015). On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems. Journal of Optimization Theory and Applications. 166:2. (659-685). Online publication date: 1-Aug-2015.

    https://doi.org/10.1007/s10957-014-0631-6

  • Wang L, Sun W, de Sampaio R and Yuan J. (2015). A Barzilai and Borwein scaling conjugate gradient method for unconstrained optimization problems. Applied Mathematics and Computation. 262:C. (136-144). Online publication date: 1-Jul-2015.

    https://doi.org/10.1016/j.amc.2015.04.046

  • Zhou Q and Hang D. (2015). Nonmonotone adaptive trust region method with line search based on new diagonal updating. Applied Numerical Mathematics. 91:C. (75-88). Online publication date: 1-May-2015.

    https://doi.org/10.1016/j.apnum.2014.12.009

  • Krejić N and Krklec Jerinkić N. (2015). Nonmonotone line search methods with variable sample size. Numerical Algorithms. 68:4. (711-739). Online publication date: 1-Apr-2015.

    https://doi.org/10.1007/s11075-014-9869-1

  • Huang S, Wan Z and Chen X. (2015). A new nonmonotone line search technique for unconstrained optimization. Numerical Algorithms. 68:4. (671-689). Online publication date: 1-Apr-2015.

    https://doi.org/10.1007/s11075-014-9866-4

  • Bueno L, Haeser G and Martínez J. (2015). A Flexible Inexact-Restoration Method for Constrained Optimization. Journal of Optimization Theory and Applications. 165:1. (188-208). Online publication date: 1-Apr-2015.

    https://doi.org/10.1007/s10957-014-0572-0

  • Todorov T. (2015). Nonlocal problem for a general second-order elliptic operator. Computers & Mathematics with Applications. 69:5. (411-422). Online publication date: 1-Mar-2015.

    https://doi.org/10.1016/j.camwa.2014.12.014

  • Zhou Q, Chen J and Xie Z. (2014). A nonmonotone trust region method based on simple quadratic models. Journal of Computational and Applied Mathematics. 272. (107-115). Online publication date: 1-Dec-2014.

    https://doi.org/10.1016/j.cam.2014.04.026

  • De Asmundis R, Di Serafino D, Hager W, Toraldo G and Zhang H. (2014). An efficient gradient method using the Yuan steplength. Computational Optimization and Applications. 59:3. (541-563). Online publication date: 1-Dec-2014.

    https://doi.org/10.1007/s10589-014-9669-5

  • Harms N, Hoheisel T and Kanzow C. (2014). On a Smooth Dual Gap Function for a Class of Quasi-Variational Inequalities. Journal of Optimization Theory and Applications. 163:2. (413-438). Online publication date: 1-Nov-2014.

    https://doi.org/10.1007/s10957-014-0536-4

  • Yu G, Xue W and Zhou Y. (2014). A nonmonotone adaptive projected gradient method for primal-dual total variation image restoration. Signal Processing. 103:C. (242-249). Online publication date: 1-Oct-2014.

    https://doi.org/10.1016/j.sigpro.2014.02.025

  • Xiao Y, Wu S and Qi L. (2014). Nonmonotone Barzilai---Borwein Gradient Algorithm for $$\ell _{1}$$ℓ1-Regularized Nonsmooth Minimization in Compressive Sensing. Journal of Scientific Computing. 61:1. (17-41). Online publication date: 1-Oct-2014.

    https://doi.org/10.1007/s10915-013-9815-8

  • Gu X and Gao L. (2014). A new nonlinear filter constructed from the Newton method and EPR in image restoration. Applied Mathematics and Computation. 234:C. (520-530). Online publication date: 15-May-2014.

    https://doi.org/10.1016/j.amc.2014.01.175

  • Zhou Q, Zhou F and Cao F. (2013). A nonmonotone trust region method based on simple conic models for unconstrained optimization. Applied Mathematics and Computation. 225. (295-305). Online publication date: 1-Dec-2013.

    https://doi.org/10.1016/j.amc.2013.09.038

  • Wen Z and Yin W. (2013). A feasible method for optimization with orthogonality constraints. Mathematical Programming: Series A and B. 142:1-2. (397-434). Online publication date: 1-Dec-2013.

    https://doi.org/10.1007/s10107-012-0584-1

  • Zhou G and Feng C. (2013). The steepest descent algorithm without line search for p-Laplacian. Applied Mathematics and Computation. 224. (36-45). Online publication date: 1-Nov-2013.

    https://doi.org/10.1016/j.amc.2013.07.096

  • Ahookhosh M, Amini K and Bahrami S. (2013). Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations. Numerical Algorithms. 64:1. (21-42). Online publication date: 1-Sep-2013.

    https://doi.org/10.1007/s11075-012-9653-z

  • Biglari F and Solimanpur M. (2013). Scaling on the Spectral Gradient Method. Journal of Optimization Theory and Applications. 158:2. (626-635). Online publication date: 1-Aug-2013.

    https://doi.org/10.1007/s10957-012-0265-5

  • Renka R. (2013). Nonlinear least squares and Sobolev gradients. Applied Numerical Mathematics. 65. (91-104). Online publication date: 1-Mar-2013.

    https://doi.org/10.1016/j.apnum.2012.12.002

  • Livieris I and Pintelas P. (2013). A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization. Journal of Computational and Applied Mathematics. 239. (396-405). Online publication date: 1-Feb-2013.

    https://doi.org/10.1016/j.cam.2012.09.007

  • Liu C. (2013). A Dynamical Tikhonov Regularization for Solving Ill-posed Linear Algebraic Systems. Acta Applicandae Mathematicae: an international survey journal on applying mathematics and mathematical applications. 123:1. (285-307). Online publication date: 1-Feb-2013.

    https://doi.org/10.1007/s10440-012-9766-3

  • Maciel M, Mendonça M and Verdiell A. (2013). Monotone and nonmonotone trust-region-based algorithms for large scale unconstrained optimization problems. Computational Optimization and Applications. 54:1. (27-43). Online publication date: 1-Jan-2013.

    https://doi.org/10.1007/s10589-012-9477-8

  • Fletcher R. (2012). A limited memory steepest descent method. Mathematical Programming: Series A and B. 135:1-2. (413-436). Online publication date: 1-Oct-2012.

    https://doi.org/10.1007/s10107-011-0479-6

  • Ou Y and Wang G. (2012). A hybrid ODE-based method for unconstrained optimization problems. Computational Optimization and Applications. 53:1. (249-270). Online publication date: 1-Sep-2012.

    https://doi.org/10.1007/s10589-012-9455-1

  • Jain A, Vishwanathan S and Varma M. SPF-GMKL. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (750-758).

    https://doi.org/10.1145/2339530.2339648

  • Kim G, Wu C, Lim S and Kim J. (2012). Modified matrix splitting method for the support vector machine and its application to the credit classification of companies in Korea. Expert Systems with Applications: An International Journal. 39:10. (8824-8834). Online publication date: 1-Aug-2012.

    https://doi.org/10.1016/j.eswa.2012.02.007

  • Xiao Y, Song H and Wang Z. (2012). A modified conjugate gradient algorithm with cyclic Barzilai-Borwein steplength for unconstrained optimization. Journal of Computational and Applied Mathematics. 236:13. (3101-3110). Online publication date: 1-Jul-2012.

    https://doi.org/10.1016/j.cam.2012.01.032

  • Jensen T, Jørgensen J, Hansen P and Jensen S. (2022). Implementation of an optimal first-order method for strongly convex total variation regularization. BIT. 52:2. (329-356). Online publication date: 1-Jun-2012.

    https://doi.org/10.1007/s10543-011-0359-8

  • Jiang J and Yuan X. (2012). A Barzilai-Borwein-based heuristic algorithm for locating multiple facilities with regional demand. Computational Optimization and Applications. 51:3. (1275-1295). Online publication date: 1-Apr-2012.

    https://doi.org/10.1007/s10589-010-9392-9

  • Miladinović M, Stanimirović P and Miljković S. (2011). Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems. Journal of Optimization Theory and Applications. 151:2. (304-320). Online publication date: 1-Nov-2011.

    https://doi.org/10.1007/s10957-011-9864-9

  • Broughton R, Coope I, Renaud P and Tappenden R. (2011). A box constrained gradient projection algorithm for compressed sensing. Signal Processing. 91:8. (1985-1992). Online publication date: 1-Aug-2011.

    https://doi.org/10.1016/j.sigpro.2011.03.003

  • Yuan G, Wei Z and Lu S. (2011). Limited memory BFGS method with backtracking for symmetric nonlinear equations. Mathematical and Computer Modelling: An International Journal. 54:1-2. (367-377). Online publication date: 1-Jul-2011.

    https://doi.org/10.1016/j.mcm.2011.02.021

  • Dongyi L and Genqi X. (2011). Applying Powell's symmetrical technique to conjugate gradient methods. Computational Optimization and Applications. 49:2. (319-334). Online publication date: 1-Jun-2011.

    https://doi.org/10.1007/s10589-009-9302-1

  • Shi Z and Wang S. (2011). Modified nonmonotone Armijo line search for descent method. Numerical Algorithms. 57:1. (1-25). Online publication date: 1-May-2011.

    https://doi.org/10.1007/s11075-010-9408-7

  • Yu Z, Sun J and Qin Y. (2011). A multivariate spectral projected gradient method for bound constrained optimization. Journal of Computational and Applied Mathematics. 235:8. (2263-2269). Online publication date: 1-Feb-2011.

    https://doi.org/10.1016/j.cam.2010.10.023

  • Meza J. (2010). Steepest descent. WIREs Computational Statistics. 2:6. (719-722). Online publication date: 22-Nov-2010.

    https://doi.org/10.1002/wics.117

  • Xiao Y, Wang Q and Wang D. (2010). Notes on the Dai-Yuan-Yuan modified spectral gradient method. Journal of Computational and Applied Mathematics. 234:10. (2986-2992). Online publication date: 1-Sep-2010.

    https://doi.org/10.1016/j.cam.2010.04.012

  • Zhou G. (2009). A descent algorithm without line search for unconstrained optimization. Applied Mathematics and Computation. 215:7. (2528-2533). Online publication date: 1-Dec-2009.

    https://doi.org/10.1016/j.amc.2009.08.058

  • Yu Z, Lin J, Sun J, Xiao Y, Liu L and Li Z. (2009). Spectral gradient projection method for monotone nonlinear equations with convex constraints. Applied Numerical Mathematics. 59:10. (2416-2423). Online publication date: 1-Oct-2009.

    https://doi.org/10.1016/j.apnum.2009.04.004

  • Heusinger A and Kanzow C. (2009). Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions. Computational Optimization and Applications. 43:3. (353-377). Online publication date: 1-Jul-2009.

    https://doi.org/10.1007/s10589-007-9145-6

  • Cruz W and Noguera G. (2009). Hybrid spectral gradient method for the unconstrained minimization problem. Journal of Global Optimization. 44:2. (193-212). Online publication date: 1-Jun-2009.

    https://doi.org/10.1007/s10898-008-9318-6

  • Shi Z and Guo J. (2009). A new family of conjugate gradient methods. Journal of Computational and Applied Mathematics. 224:1. (444-457). Online publication date: 1-Feb-2009.

    https://doi.org/10.1016/j.cam.2008.05.012

  • Apostolopoulou M, Sotiropoulos D and Pintelas P. (2008). Solving the quadratic trust-region subproblem in a low-memory BFGS framework. Optimization Methods & Software. 23:5. (651-674). Online publication date: 1-Oct-2008.

    https://doi.org/10.1080/10556780802413579

  • Diniz-Ehrhardt M, Martínez J and Raydan M. (2008). A derivative-free nonmonotone line-search technique for unconstrained optimization. Journal of Computational and Applied Mathematics. 219:2. (383-397). Online publication date: 20-Sep-2008.

    https://doi.org/10.1016/j.cam.2007.07.017

  • Yu Z. (2008). Solving bound constrained optimization via a new nonmonotone spectral projected gradient method. Applied Numerical Mathematics. 58:9. (1340-1348). Online publication date: 1-Sep-2008.

    https://doi.org/10.1016/j.apnum.2007.07.007

  • Shi Z and Guo J. (2008). Convergence of memory gradient methods. International Journal of Computer Mathematics. 85:7. (1039-1053). Online publication date: 1-Jul-2008.

    https://doi.org/10.1080/00207160701466370

  • Andreani R, Birgin E, Martínez J and Schuverdt M. (2008). Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Mathematical Programming: Series A and B. 111:1-2. (5-32). Online publication date: 1-Jan-2008.

    /doi/10.5555/3113602.3113796

  • Birgin E and Martínez J. (2008). Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications. 39:1. (1-16). Online publication date: 1-Jan-2008.

    https://doi.org/10.1007/s10589-007-9050-z

  • Auslender A, Silva P and Teboulle M. (2007). Nonmonotone projected gradient methods based on barrier and Euclidean distances. Computational Optimization and Applications. 38:3. (305-327). Online publication date: 1-Dec-2007.

    /doi/10.5555/1324998.1325013

  • Andrei N. (2007). Scaled conjugate gradient algorithms for unconstrained optimization. Computational Optimization and Applications. 38:3. (401-416). Online publication date: 1-Dec-2007.

    https://doi.org/10.1007/s10589-007-9055-7

  • Crema A, Loreto M and Raydan M. (2007). Spectral projected subgradient with a momentum term for the Lagrangean dual approach. Computers and Operations Research. 34:10. (3174-3186). Online publication date: 1-Oct-2007.

    https://doi.org/10.1016/j.cor.2005.11.024

  • Andrei N. (2007). Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization. Optimization Methods & Software. 22:4. (561-571). Online publication date: 1-Aug-2007.

    https://doi.org/10.1080/10556780600822260

  • Grippo L and Sciandrone M. (2007). Nonmonotone derivative-free methods for nonlinear equations. Computational Optimization and Applications. 37:3. (297-328). Online publication date: 1-Jul-2007.

    https://doi.org/10.1007/s10589-007-9028-x

  • Shi Z and Shen J. (2007). Convergence of supermemory gradient method. Journal of Applied Mathematics and Computing. 24:1. (367-376). Online publication date: 1-May-2007.

    https://doi.org/10.1007/BF02832325

  • Zhou B, Gao L and Dai Y. (2006). Gradient Methods with Adaptive Step-Sizes. Computational Optimization and Applications. 35:1. (69-86). Online publication date: 1-Sep-2006.

    https://doi.org/10.1007/s10589-006-6446-0

  • Pronzato L, Wynn H and Zhigljavsky A. (2006). Asymptotic behaviour of a family of gradient algorithms in źd and Hilbert spaces. Mathematical Programming: Series A and B. 107:3. (409-438). Online publication date: 1-Jul-2006.

    /doi/10.5555/3113624.3114141

  • Dai Y and Fletcher R. (2006). New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Mathematical Programming: Series A and B. 106:3. (403-421). Online publication date: 1-May-2006.

    /doi/10.5555/2811715.3114302

  • Sirlantzis K, Lamb J and Liu W. (2006). Novel Algorithms for Noisy Minimization Problems with Applications to Neural Networks Training. Journal of Optimization Theory and Applications. 129:2. (325-340). Online publication date: 1-May-2006.

    https://doi.org/10.1007/s10957-006-9066-z

  • Yang H, Liu T, Gao L and Ma W. Heterogeneous information integration in hierarchical text classification. Proceedings of the 10th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining. (240-249).

    https://doi.org/10.1007/11731139_29

  • Shi Z and Shen J. (2006). On memory gradient method with trust region for unconstrained optimization. Numerical Algorithms. 41:2. (173-196). Online publication date: 1-Feb-2006.

    https://doi.org/10.1007/s11075-005-9008-0

  • Renka R. (2004). Constructing fair curves and surfaces with a Sobolev gradient method. Computer Aided Geometric Design. 21:2. (137-149). Online publication date: 1-Feb-2004.

    https://doi.org/10.1016/j.cagd.2003.07.006

  • Huang H, Liang Z and Pardalos P. (2004). Flow Search Approach and New Bounds for the m-Step Linear Conjugate Gradient Algorithm. Journal of Optimization Theory and Applications. 120:1. (53-71). Online publication date: 1-Jan-2004.

    https://doi.org/10.1023/B:JOTA.0000012732.62633.59

  • Birgin E, Chambouleyron I, Martínez J and Ventura S. (2003). Estimation of optical parameters of very thin films. Applied Numerical Mathematics. 47:2. (109-119). Online publication date: 1-Nov-2003.

    https://doi.org/10.1016/S0168-9274(03)00055-2

  • Grippo L and Sciandrone M. (2002). Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient Method. Computational Optimization and Applications. 23:2. (143-169). Online publication date: 1-Nov-2002.

    https://doi.org/10.1023/A:1020587701058

  • Birgin E and Mario Martínez J. (2002). Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients. Computational Optimization and Applications. 23:1. (101-125). Online publication date: 1-Oct-2002.

    https://doi.org/10.1023/A:1019928808826

  • Dai Y, Yuan J and Yuan Y. (2002). Modified Two-Point Stepsize Gradient Methods for Unconstrained Optimization. Computational Optimization and Applications. 22:1. (103-109). Online publication date: 1-Apr-2002.

    https://doi.org/10.1023/A:1014838419611

  • Dai Y. (2002). On the Nonmonotone Line Search. Journal of Optimization Theory and Applications. 112:2. (315-330). Online publication date: 1-Feb-2002.

    /doi/10.5555/3227761.3228215

  • Liu W and Dai Y. (2001). Minimization Algorithms Based on Supervisor and Searcher Cooperation. Journal of Optimization Theory and Applications. 111:2. (359-379). Online publication date: 1-Nov-2001.

    https://doi.org/10.1023/A:1011986402461

  • Birgin E, Martínez J and Raydan M. (2001). Algorithm 813. ACM Transactions on Mathematical Software. 27:3. (340-349). Online publication date: 1-Sep-2001.

    https://doi.org/10.1145/502800.502803

  • Birgin E, Chambouleyron I and Martínez J. (1999). Estimation of the Optical Constants and the Thickness of Thin Films Using Unconstrained Optimization. Journal of Computational Physics. 151:2. (862-880). Online publication date: 20-May-1999.

    https://doi.org/10.1006/jcph.1999.6224