• Xin R, Wang J, Chen P and Zhao Z. (2025). Trustworthy AI-based Performance Diagnosis Systems for Cloud Applications: A Review. ACM Computing Surveys. 10.1145/3701740. 57:5. (1-37). Online publication date: 31-May-2025.

    https://dl.acm.org/doi/10.1145/3701740

  • Salles R, Lima J, Reis M, Coutinho R, Pacitti E, Masseglia F, Akbarinia R, Chen C, Garibaldi J, Porto F and Ogasawara E. (2024). SoftED. Computers and Industrial Engineering. 198:C. Online publication date: 1-Dec-2024.

    https://doi.org/10.1016/j.cie.2024.110728

  • Wang D, Li S, Xiao G, Liu Y, Sui Y, He P and Lyu M. An Exploratory Investigation of Log Anomalies in Unmanned Aerial Vehicles. Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. (1-13).

    https://doi.org/10.1145/3597503.3639186

  • Tatbul N, Lee T, Zdonik S, Alam M and Gottschlich J. Precision and recall for time series. Proceedings of the 32nd International Conference on Neural Information Processing Systems. (1924-1934).

    /doi/10.5555/3326943.3327120

  • Wielgosz M, Mertik M, Skoczeń A and De Matteis E. (2018). The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization. Engineering Applications of Artificial Intelligence. 74:C. (166-185). Online publication date: 1-Sep-2018.

    https://doi.org/10.1016/j.engappai.2018.06.012

  • Benkabou S, Benabdeslem K and Canitia B. (2018). Unsupervised outlier detection for time series by entropy and dynamic time warping. Knowledge and Information Systems. 54:2. (463-486). Online publication date: 1-Feb-2018.

    https://doi.org/10.1007/s10115-017-1067-8

  • Li Y, U L, Yiu M and Gong Z. (2016). Efficient discovery of longest-lasting correlation in sequence databases. The VLDB Journal — The International Journal on Very Large Data Bases. 25:6. (767-790). Online publication date: 1-Dec-2016.

    https://doi.org/10.1007/s00778-016-0432-7

  • Li Y. Efficient Query Processing in Time Series. Proceedings of the 2015 ACM SIGMOD on PhD Symposium. (21-26).

    https://doi.org/10.1145/2744680.2744688

  • Ranshous S, Shen S, Koutra D, Harenberg S, Faloutsos C and Samatova N. (2015). Anomaly detection in dynamic networks. WIREs Computational Statistics. 7:3. (223-247). Online publication date: 1-May-2015.

    https://doi.org/10.1002/wics.1347

  • Skudlarek S and Yamamoto H. (2014). Unsupervised anomaly detection within non-numerical sequence data by average index difference, with application to masquerade detection. Applied Stochastic Models in Business and Industry. 30:5. (632-656). Online publication date: 1-Sep-2014.

    https://doi.org/10.1002/asmb.2057

  • Li Y, U L, Yiu M and Gong Z. (2013). Discovering longest-lasting correlation in sequence databases. Proceedings of the VLDB Endowment. 6:14. (1666-1677). Online publication date: 1-Sep-2013.

    https://doi.org/10.14778/2556549.2556552

  • Textor J. A comparative study of negative selection based anomaly detection in sequence data. Proceedings of the 11th international conference on Artificial Immune Systems. (28-41).

    https://doi.org/10.1007/978-3-642-33757-4_3

  • Chandola V, Boriah S and Kumar V. A reference based analysis framework for analyzing system call traces. Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research. (1-3).

    https://doi.org/10.1145/1852666.1852703