• Stahl A and Schmitt I. BBQ-Tree – A Decision Tree with Boolean and Quantum Logic Decisions. Advances in Databases and Information Systems. (201-214).

    https://doi.org/10.1007/978-3-031-70626-4_14

  • Liu L and Li F. (2022). A Survey on Dynamic Fuzzy Machine Learning. ACM Computing Surveys. 55:7. (1-42). Online publication date: 31-Jul-2023.

    https://doi.org/10.1145/3544013

  • Xia H, Tang J, Yu W, Cui C and Qiao J. (2023). Takagi–Sugeno Fuzzy Regression Trees With Application to Complex Industrial Modeling. IEEE Transactions on Fuzzy Systems. 31:7. (2210-2224). Online publication date: 1-Jul-2023.

    https://doi.org/10.1109/TFUZZ.2022.3221790

  • Ren Y, Zhu X, Bai K and Zhang R. (2023). A New Random Forest Ensemble of Intuitionistic Fuzzy Decision Trees. IEEE Transactions on Fuzzy Systems. 31:5. (1729-1741). Online publication date: 1-May-2023.

    https://doi.org/10.1109/TFUZZ.2022.3215725

  • Costa V and Pedreira C. (2022). Recent advances in decision trees: an updated survey. Artificial Intelligence Review. 56:5. (4765-4800). Online publication date: 1-May-2023.

    https://doi.org/10.1007/s10462-022-10275-5

  • Schmitt I. QLDT+: Efficient Construction of a Quantum Logic Decision Tree. Proceedings of the 2023 8th International Conference on Machine Learning Technologies. (82-88).

    https://doi.org/10.1145/3589883.3589895

  • Han X, Zhu X, Pedrycz W and Li Z. (2023). A three-way classification with fuzzy decision trees. Applied Soft Computing. 132:C. Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.asoc.2022.109788

  • Custode L and Iacca G. Interpretable pipelines with evolutionary optimized modules for reinforcement learning tasks with visual inputs. Proceedings of the Genetic and Evolutionary Computation Conference Companion. (224-227).

    https://doi.org/10.1145/3520304.3528897

  • Bartczuk Ł. A New Interval Type-2 Fuzzy PRISM Algorithm. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).

    https://doi.org/10.1109/FUZZ45933.2021.9494511

  • Silva R, Caminhas W, de Lima e Silva P and Guimarães F. A C4.5 Fuzzy Decision Tree Method for Multivariate Time Series Forecasting. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).

    https://doi.org/10.1109/FUZZ45933.2021.9494439

  • Kiersztyn A, Lopucki R, Kiersztyn K, Karczmarek P, Powroźnik P, Czerwiński D and Pedrycz W. A Comprehensive Analysis of the Impact of Selecting the Training Set Elements on the Correctness of Classification for Highly Variable Ecological Data. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).

    https://doi.org/10.1109/FUZZ45933.2021.9494399

  • Mahan F, Mohammadzad M, Rozekhani S and Pedrycz W. (2021). Chi-MFlexDT. Applied Soft Computing. 105:C. Online publication date: 1-Jul-2021.

    https://doi.org/10.1016/j.asoc.2021.107301

  • Phan H, Nguyen N, Tran V and Hwang D. (2021). An approach for a decision-making support system based on measuring the user satisfaction level on Twitter. Information Sciences: an International Journal. 561:C. (243-273). Online publication date: 1-Jun-2021.

    https://doi.org/10.1016/j.ins.2021.01.008

  • Barsacchi M, Bechini A and Marcelloni F. Implicitly distributed fuzzy random forests. Proceedings of the 36th Annual ACM Symposium on Applied Computing. (392-399).

    https://doi.org/10.1145/3412841.3442082

  • Kantarci S, Vahaplar A, Kinay A and Nasibov E. Influence of T-norm and T-conorm operators in Fuzzy ID3 algorithm. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).

    https://doi.org/10.1109/FUZZ-IEEE.2015.7337994

  • Mohammadiun S, Hu G, Alavi Gharahbagh A, Mirshahi R, Li J, Hewage K and Sadiq R. (2021). Optimization of integrated fuzzy decision tree and regression models for selection of oil spill response method in the Arctic. Knowledge-Based Systems. 213:C. Online publication date: 15-Feb-2021.

    https://doi.org/10.1016/j.knosys.2020.106676

  • Alkhoury S, Devijver E, Clausel M, Tami M, Gaussier E and Oppenheim G. Smooth and consistent probabilistic regression trees. Proceedings of the 34th International Conference on Neural Information Processing Systems. (11345-11355).

    /doi/10.5555/3495724.3496676

  • Cherrier N, Poli J, Defurne M and Sabatié F. Embedded Feature Construction in Fuzzy Decision Tree Induction for High Energy Physics Classification. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). (615-622).

    https://doi.org/10.1109/SMC42975.2020.9283103

  • Mu Y, Wang L and Liu X. (2020). Dynamic programming based fuzzy partition in fuzzy decision tree induction. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 39:5. (6757-6772). Online publication date: 1-Jan-2020.

    https://doi.org/10.3233/JIFS-191497

  • Ramos D, Carneiro D and Novais P. (2020). Using a Genetic Algorithm to optimize a stacking ensemble in data streaming scenarios. AI Communications. 33:1. (27-40). Online publication date: 1-Jan-2020.

    https://doi.org/10.3233/AIC-200648

  • Nagarajan R and Thirunavukarasu R. (2019). A fuzzy-based decision-making broker for effective identification and selection of cloud infrastructure services. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 23:19. (9669-9683). Online publication date: 1-Oct-2019.

    https://doi.org/10.1007/s00500-018-3534-x

  • Carniel A and Schneider M. A Systematic Approach to Creating Fuzzy Region Objects from Real Spatial Data Sets. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).

    https://doi.org/10.1109/FUZZ-IEEE.2019.8858878

  • Nayak N, Dash P and Bisoi R. (2019). A Hybrid Time Frequency Response and Fuzzy Decision Tree for Non-stationary Signal Analysis and Pattern Recognition. International Journal of Automation and Computing. 16:3. (398-412). Online publication date: 1-Jun-2019.

    https://doi.org/10.1007/s11633-018-1113-3

  • Gadomer ? and Sosnowski Z. (2019). Knowledge aggregation in decision-making process with C-fuzzy random forest using OWA operators. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 23:11. (3741-3755). Online publication date: 1-Jun-2019.

    https://doi.org/10.1007/s00500-018-3036-x

  • Couso I, Borgelt C, Hullermeier E and Kruse R. (2019). Fuzzy Sets in Data Analysis. IEEE Computational Intelligence Magazine. 14:1. (31-44). Online publication date: 1-Feb-2019.

    https://doi.org/10.1109/MCI.2018.2881642

  • Herazo-Padilla N, Augusto V, Bongue B and Xie X. Profiling health prevention population for hypertension screening and ECG test rationing. 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE). (371-377).

    https://doi.org/10.1109/COASE.2018.8560601

  • Rhuggenaath J, Zhang Y, Akcay A, Kaymak U and Verwer S. Learning fuzzy decision trees using integer programming. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-8).

    https://doi.org/10.1109/FUZZ-IEEE.2018.8491636

  • Avdeenko T, Makarova E and Begenova S. Combination of Case-Based Reasoning and Data Mining Through Integration with the Domain Ontology. Data Mining and Big Data. (159-167).

    https://doi.org/10.1007/978-3-319-93803-5_15

  • Li F, Li Y, Shang C and Shen Q. (2018). Improving fuzzy rule interpolation performance with information gain-guided antecedent weighting. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 22:10. (3125-3139). Online publication date: 1-May-2018.

    https://doi.org/10.1007/s00500-017-2805-2

  • Cadenas J, Garrido M, Martínez R, Muñoz E and Bonissone P. (2018). A fuzzy K-nearest neighbor classifier to deal with imperfect data. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 22:10. (3313-3330). Online publication date: 1-May-2018.

    https://doi.org/10.1007/s00500-017-2567-x

  • Segatori A, Marcelloni F and Pedrycz W. (2018). On Distributed Fuzzy Decision Trees for Big Data. IEEE Transactions on Fuzzy Systems. 26:1. (174-192). Online publication date: 1-Feb-2018.

    https://doi.org/10.1109/TFUZZ.2016.2646746

  • Marsala C and Rifqi M. Fuzzy decision tree and fuzzy gradual decision tree: Application to job satisfaction. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).

    https://doi.org/10.1109/FUZZ-IEEE.2017.8015740

  • Barsacchi M, Bechini A and Marcelloni F. Multi-class boosting with fuzzy decision trees. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).

    https://doi.org/10.1109/FUZZ-IEEE.2017.8015567

  • Bechini A, De Matteis A, Marcelloni F and Segatori A. Spreading fuzzy random forests with MapReduce. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). (002641-002646).

    https://doi.org/10.1109/SMC.2016.7844638

  • Narayanan S, Bhatt R and Paramasivam I. (2016). An Improved Second Order Training Algorithm for Improving the Accuracy of Fuzzy Decision Trees. International Journal of Fuzzy System Applications. 5:4. (96-120). Online publication date: 1-Oct-2016.

    https://doi.org/10.4018/IJFSA.2016100105

  • Sosnowski Z and Walijewski J. Fuzzy Dempster-Shafer Modelling and Decision Rules. Computer Information Systems and Industrial Management. (516-529).

    https://doi.org/10.1007/978-3-319-45378-1_46

  • Gadomer Ł and Sosnowski Z. Fuzzy Random Forest with C–Fuzzy Decision Trees. Computer Information Systems and Industrial Management. (481-492).

    https://doi.org/10.1007/978-3-319-45378-1_43

  • Thangaraj M and Vijayalakshmi C. A Multi relational Framework for Knowledge Classification using Fuzzy Decision Tree in Biological System. Proceedings of the The 11th International Knowledge Management in Organizations Conference on The changing face of Knowledge Management Impacting Society. (1-8).

    https://doi.org/10.1145/2925995.2926026

  • (2016). A cloned linguistic decision tree controller for real-time path planning in hostile environments. Fuzzy Sets and Systems. 293:C. (1-29). Online publication date: 15-Jun-2016.

    https://doi.org/10.1016/j.fss.2015.08.017

  • Afify A. (2016). A fuzzy rule induction algorithm for discovering classification rules. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 30:6. (3067-3085). Online publication date: 1-Jan-2016.

    https://doi.org/10.3233/IFS-152034

  • Hüllermeier E. (2015). Does machine learning need fuzzy logic?. Fuzzy Sets and Systems. 281:C. (292-299). Online publication date: 15-Dec-2015.

    https://doi.org/10.1016/j.fss.2015.09.001

  • Senge R and Hullermeier E. (2015). Fast Fuzzy Pattern Tree Learning for Classification. IEEE Transactions on Fuzzy Systems. 23:6. (2024-2033). Online publication date: 1-Dec-2015.

    https://doi.org/10.1109/TFUZZ.2015.2396078

  • Lee H, Hong B and Kim K. Documents topic classification model in social networks using classifiers voting system. Proceedings of the 2015 Conference on research in adaptive and convergent systems. (68-73).

    https://doi.org/10.1145/2811411.2811480

  • Balamash A, Pedrycz W, Al-Hmouz R and Morfeq A. (2015). An expansion of fuzzy information granules through successive refinements of their information content and their use to system modeling. Expert Systems with Applications: An International Journal. 42:6. (2985-2997). Online publication date: 15-Apr-2015.

    https://doi.org/10.1016/j.eswa.2014.11.027

  • Kalanat N, Shamsinejadbabaki P and Saraee M. (2015). A fuzzy method for discovering cost-effective actions from data. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 28:2. (757-765). Online publication date: 1-Mar-2015.

    /doi/10.5555/2729770.2729795

  • Zhai J, Zhai M and Kang X. (2014). Condensed fuzzy nearest neighbor methods based on fuzzy rough set technique. Intelligent Data Analysis. 18:3. (429-447). Online publication date: 1-May-2014.

    /doi/10.5555/2639304.2639311

  • Narayanan S, Bhatt R, Paramasivam I, Khalid M and Tripathy B. (2014). Induction of fuzzy decision trees and its refinement using gradient projected-neuro-fuzzy decision tree. International Journal of Advanced Intelligence Paradigms. 6:4. (346-369). Online publication date: 1-Jan-2014.

    https://doi.org/10.1504/IJAIP.2014.066983

  • Trawiński K, Cordón O, Quirin A and Sánchez L. (2013). Multiobjective genetic classifier selection for random oracles fuzzy rule-based classifier ensembles. Knowledge-Based Systems. 54:C. (3-21). Online publication date: 1-Dec-2013.

    /doi/10.5555/2770961.2771097

  • Qin Z and Wan T. (2013). Hybrid Bayesian estimation tree learning with discrete and fuzzy labels. Frontiers of Computer Science: Selected Publications from Chinese Universities. 7:6. (852-863). Online publication date: 1-Dec-2013.

    https://doi.org/10.1007/s11704-013-3007-4

  • Evans L, Lohse N and Summers M. (2013). A fuzzy-decision-tree approach for manufacturing technology selection exploiting experience-based information. Expert Systems with Applications: An International Journal. 40:16. (6412-6426). Online publication date: 1-Nov-2013.

    https://doi.org/10.1016/j.eswa.2013.05.047

  • Afsari F, Eftekhari M, Eslami E and Woo P. (2013). Interpretability-based fuzzy decision tree classifier a hybrid of the subtractive clustering and the multi-objective evolutionary algorithm. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 17:9. (1673-1686). Online publication date: 1-Sep-2013.

    https://doi.org/10.1007/s00500-013-0981-2

  • Cordón O and Trawiński K. A novel framework to design fuzzy rule-based ensembles using diversity induction and evolutionary algorithms-based classifier selection and fusion. Proceedings of the 12th international conference on Artificial Neural Networks: advances in computational intelligence - Volume Part I. (36-58).

    https://doi.org/10.1007/978-3-642-38679-4_3

  • Srinivasan V, Rajenderan G, Vandar Kuzhali J and Aruna M. (2013). Fuzzy fast classification algorithm with hybrid of ID3 and SVM. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 24:3. (555-561). Online publication date: 1-May-2013.

    /doi/10.5555/2596166.2596179

  • Liu X, Feng X and Pedrycz W. (2013). Extraction of fuzzy rules from fuzzy decision trees. Data & Knowledge Engineering. 84. (1-25). Online publication date: 1-Mar-2013.

    https://doi.org/10.1016/j.datak.2012.12.001

  • Kumar A, Hanmandlu M and Gupta H. (2013). Ant colony optimization based fuzzy binary decision tree for bimodal hand knuckle verification system. Expert Systems with Applications: An International Journal. 40:2. (439-449). Online publication date: 1-Feb-2013.

    https://doi.org/10.1016/j.eswa.2012.07.042

  • Kumar A, Hanmandlu M and Gupta H. (2013). Fuzzy binary decision tree for biometric based personal authentication. Neurocomputing. 99. (87-97). Online publication date: 1-Jan-2013.

    https://doi.org/10.1016/j.neucom.2012.06.016

  • He N, Li L and Yoshie O. (2012). Decision forest. International Journal of Business Intelligence and Data Mining. 7:3. (203-216). Online publication date: 1-Oct-2012.

    https://doi.org/10.1504/IJBIDM.2012.049555

  • Yu T, Wei J and Li J. PAC learnability of rough hypercuboid classifier. Proceedings of the 8th international conference on Intelligent Computing Theories and Applications. (648-655).

    https://doi.org/10.1007/978-3-642-31576-3_82

  • Franco-Arcega A, Carrasco-Ochoa J, Sánchez-Díaz G and Fco Martínez-Trinidad J. (2012). Building fast decision trees from large training sets. Intelligent Data Analysis. 16:4. (649-664). Online publication date: 1-Jul-2012.

    /doi/10.5555/2595513.2595519

  • Evans L and Lohse N. Optimized fuzzy decision tree data mining for engineering applications. Proceedings of the 11th international conference on Advances in data mining: applications and theoretical aspects. (228-239).

    /doi/10.5555/2033796.2033819

  • Jeon M, Lee S and Bien Z. (2011). Hand Gesture Recognition Using Multivariate Fuzzy Decision Tree and User Adaptation. International Journal of Fuzzy System Applications. 1:3. (15-31). Online publication date: 1-Jul-2011.

    https://doi.org/10.4018/ijfsa.2011070102

  • Qin Z and Lawry J. (2011). Prediction and query evaluation using linguistic decision trees. Applied Soft Computing. 11:5. (3916-3928). Online publication date: 1-Jul-2011.

    https://doi.org/10.1016/j.asoc.2011.02.010

  • Moreno P, Ribeiro P and Santos-Victor J. Feature set search space for fuzzyboost learning. Proceedings of the 5th Iberian conference on Pattern recognition and image analysis. (248-255).

    /doi/10.5555/2021341.2021376

  • Aymerich F, Alonso J, Cabaòas M, Comabella M, Sobrevilla P and Rovira A. (2011). Decision tree based fuzzy classifier of H1 magnetic resonance spectra from cerebrospinal fluid samples. Fuzzy Sets and Systems. 170:1. (43-63). Online publication date: 1-May-2011.

    https://doi.org/10.1016/j.fss.2011.01.003

  • Hüllermeier E. (2011). Fuzzy sets in machine learning and data mining. Applied Soft Computing. 11:2. (1493-1505). Online publication date: 1-Mar-2011.

    https://doi.org/10.1016/j.asoc.2008.01.004

  • Bartczuk Ł, Dziwiński P and Starczewski J. New method for generation type-2 fuzzy partition for FDT. Proceedings of the 10th international conference on Artificial intelligence and soft computing: Part I. (275-280).

    /doi/10.5555/1894214.1894251

  • Shah H and Gopal M. (2010). Fuzzy decision tree function approximation in reinforcement learning. International Journal of Artificial Intelligence and Soft Computing. 2:1/2. (26-45). Online publication date: 1-Apr-2010.

    https://doi.org/10.1504/IJAISC.2010.032511

  • Burduk R. (2010). Classification error in Bayes multistage recognition task with fuzzy observations. Pattern Analysis & Applications. 13:1. (85-91). Online publication date: 1-Feb-2010.

    /doi/10.5555/2736754.2736791

  • Ahmadi E, Taheri M, Mirshekari N, Hashemi S, Sami A and Hamze A. Cooperative fuzzy rulebase construction based on a novel fuzzy decision tree. Proceedings of the 6th international conference on Innovations in information technology. (265-269).

    /doi/10.5555/1802274.1802329

  • Campbell P, Fathulla H and Ahmed F. FuzzyCART. Proceedings of the 6th international conference on Innovations in information technology. (255-259).

    /doi/10.5555/1802274.1802327

  • Hüllermeier E and Vanderlooy S. (2009). Why fuzzy decision trees are good rankers. IEEE Transactions on Fuzzy Systems. 17:6. (1233-1244). Online publication date: 1-Dec-2009.

    https://doi.org/10.1109/TFUZZ.2009.2026640

  • Jin J, Tang L, Hruska Z and Yao H. (2009). Classification of toxigenic and atoxigenic strains of Aspergillus flavus with hyperspectral imaging. Computers and Electronics in Agriculture. 69:2. (158-164). Online publication date: 1-Dec-2009.

    https://doi.org/10.1016/j.compag.2009.07.023

  • Jensen R and Shen Q. (2009). Feature selection for aiding glass forensic evidence analysis. Intelligent Data Analysis. 13:5. (703-723). Online publication date: 1-Oct-2009.

    /doi/10.5555/1662565.1662568

  • Qureshi T and Zighed D. A soft discretization technique for fuzzy decision trees using resampling. Proceedings of the 10th international conference on Intelligent data engineering and automated learning. (586-593).

    /doi/10.5555/1789574.1789650

  • Cadenas J, Garrido M and Muñoz E. (2009). Using machine learning in a cooperative hybrid parallel strategy of metaheuristics. Information Sciences: an International Journal. 179:19. (3255-3267). Online publication date: 1-Sep-2009.

    https://doi.org/10.1016/j.ins.2009.05.014

  • Jeon M, Yang S and Bien Z. User adaptive hand gesture recognition using multivariate fuzzy decision tree and fuzzy garbage model. Proceedings of the 18th international conference on Fuzzy Systems. (474-479).

    /doi/10.5555/1717561.1717644

  • Gasir F, Bandar Z and Crockett K. Elgasir. Proceedings of the 18th international conference on Fuzzy Systems. (332-337).

    /doi/10.5555/1717561.1717619

  • Hashemi S and Yang Y. (2009). Flexible decision tree for data stream classification in the presence of concept change, noise and missing values. Data Mining and Knowledge Discovery. 19:1. (95-131). Online publication date: 1-Aug-2009.

    https://doi.org/10.1007/s10618-009-0130-9

  • Chandra B and Paul Varghese P. (2009). Fuzzifying Gini Index based decision trees. Expert Systems with Applications: An International Journal. 36:4. (8549-8559). Online publication date: 1-May-2009.

    https://doi.org/10.1016/j.eswa.2008.10.053

  • Crockett K, Bandar Z, O'Shea J and Fowdar J. (2008). A fuzzy numeric inference strategy for classification and regression problems. International Journal of Knowledge-based and Intelligent Engineering Systems. 12:4. (255-269). Online publication date: 1-Dec-2008.

    /doi/10.5555/1460198.1460199

  • Zhou S and Gan J. (2008). Low-level interpretability and high-level interpretability. Fuzzy Sets and Systems. 159:23. (3091-3131). Online publication date: 1-Dec-2008.

    https://doi.org/10.1016/j.fss.2008.05.016

  • Ye X and Liu Z. An Optimized Parallel Decision Tree Model Based on Rough Set Theory. Proceedings of the 4th international conference on Intelligent Computing: Advanced Intelligent Computing Theories and Applications - with Aspects of Artificial Intelligence. (832-839).

    https://doi.org/10.1007/978-3-540-85984-0_100

  • Jenhani I, Amor N and Elouedi Z. (2008). Decision trees as possibilistic classifiers. International Journal of Approximate Reasoning. 48:3. (784-807). Online publication date: 1-Aug-2008.

    https://doi.org/10.1016/j.ijar.2007.12.002

  • Shen Q and Jensen R. (2008). Approximation-based feature selection and application for algae population estimation. Applied Intelligence. 28:2. (167-181). Online publication date: 1-Apr-2008.

    https://doi.org/10.1007/s10489-007-0058-y

  • Papageorgiou E, Spyridonos P, Glotsos D, Stylios C, Ravazoula P, Nikiforidis G and Groumpos P. (2008). Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Applied Soft Computing. 8:1. (820-828). Online publication date: 1-Jan-2008.

    https://doi.org/10.1016/j.asoc.2007.06.006

  • Keles A, Samet Hasiloglu A, Keles A and Aksoy Y. (2007). Neuro-fuzzy classification of prostate cancer using NEFCLASS-J. Computers in Biology and Medicine. 37:11. (1617-1628). Online publication date: 1-Nov-2007.

    /doi/10.5555/1287847.1288045

  • Sun S, Zhang C and Zhang D. (2007). An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognition Letters. 28:15. (2157-2163). Online publication date: 1-Nov-2007.

    https://doi.org/10.1016/j.patrec.2007.06.018

  • Li Z, Wang T, Wang R, Yan Y and Chen H. A new fuzzy decision tree classification method for mining high-speed data streams based on binary search trees. Proceedings of the 1st annual international conference on Frontiers in algorithmics. (216-227).

    /doi/10.5555/1776166.1776186

  • Exarchos T, Tsipouras M, Exarchos C, Papaloukas C, Fotiadis D and Michalis L. (2007). A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artificial Intelligence in Medicine. 40:3. (187-200). Online publication date: 1-Jul-2007.

    https://doi.org/10.1016/j.artmed.2007.04.001

  • Wang T, Li Z, Hu X, Yan Y and Chen H. A new decision tree classification method for mining high-speed data streams based on threaded binary search trees. Proceedings of the 2007 international conference on Emerging technologies in knowledge discovery and data mining. (256-267).

    /doi/10.5555/1780582.1780612

  • Doncescu A, Aguilar-Martin J and Atine J. (2007). Image color segmentation using the fuzzy tree algorithm T-LAMDA. Fuzzy Sets and Systems. 158:3. (230-238). Online publication date: 1-Feb-2007.

    https://doi.org/10.1016/j.fss.2006.10.007

  • Onisawa T and Yano T. Construction of poker playing system considering strategies. Proceedings of the 2006 international conference on Game research and development. (121-128).

    /doi/10.5555/1234341.1234362

  • Kim M and Ryu J. Optimized fuzzy decision tree using genetic algorithm. Proceedings of the 13th international conference on Neural information processing - Volume Part III. (797-806).

    /doi/10.5555/1986861.1986956

  • Basak J. (2006). Online Adaptive Decision Trees. Neural Computation. 18:9. (2062-2101). Online publication date: 1-Sep-2006.

    https://doi.org/10.1162/neco.2006.18.9.2062

  • Bartczuk Ł and Rutkowska D. A new version of the Fuzzy-ID3 algorithm. Proceedings of the 8th international conference on Artificial Intelligence and Soft Computing. (1060-1070).

    https://doi.org/10.1007/11785231_111

  • He Y, Tang Y, Zhang Y and Sunderraman R. (2006). Adaptive Fuzzy Association Rule mining for effective decision support in biomedical applications. International Journal of Data Mining and Bioinformatics. 1:1. (3-18). Online publication date: 1-Jun-2006.

    https://doi.org/10.1504/IJDMB.2006.009919

  • Wang T and Lee H. Constructing a fuzzy decision tree by integrating fuzzy sets and entropy. Proceedings of the 5th WSEAS international conference on Applied computer science. (306-311).

    /doi/10.5555/1973598.1973657

  • Liu Z and Feng D. Incremental fuzzy decision tree-based network forensic system. Proceedings of the 2005 international conference on Computational Intelligence and Security - Volume Part II. (995-1002).

    https://doi.org/10.1007/11596981_148

  • Hüllermeier E. (2005). Fuzzy methods in machine learning and data mining. Fuzzy Sets and Systems. 156:3. (387-406). Online publication date: 1-Dec-2005.

    https://doi.org/10.1016/j.fss.2005.05.036

  • Kim M and Ryu J. Optimized fuzzy classification using genetic algorithm. Proceedings of the Second international conference on Fuzzy Systems and Knowledge Discovery - Volume Part I. (392-401).

    https://doi.org/10.1007/11539506_51

  • Wozniak M. Three classifiers for acute abdominal pain diagnosis – comparative study. Proceedings of the 5th international conference on Computational Science - Volume Part III. (929-932).

    https://doi.org/10.1007/11428862_140

  • Wei S and Da-xin L. Mining schemas in semi-structured data using fuzzy decision trees. Proceedings of the 2005 international conference on Computational Science and Its Applications - Volume Part IV. (753-761).

    https://doi.org/10.1007/11424925_79

  • Au W, Chan K, Wong A and Wang Y. (2005). Attribute Clustering for Grouping, Selection, and Classification of Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2:2. (83-101). Online publication date: 1-Apr-2005.

    https://doi.org/10.1109/TCBB.2005.17

  • Chiang I, Shieh M, Hsu J and Wong J. (2005). Building a Medical Decision Support System for Colon Polyp Screening by Using Fuzzy Classification Trees. Applied Intelligence. 22:1. (61-75). Online publication date: 1-Jan-2005.

    https://doi.org/10.1023/B:APIN.0000047384.85823.f6

  • Au W and Chan K. (2005). Mining changes in association rules. Fuzzy Sets and Systems. 149:1. (87-104). Online publication date: 1-Jan-2005.

    https://doi.org/10.1016/j.fss.2004.07.018

  • Olaru C and Wehenkel L. (2003). A complete fuzzy decision tree technique. Fuzzy Sets and Systems. 138:2. (221-254). Online publication date: 1-Sep-2003.

    https://doi.org/10.1016/S0165-0114(03)00089-7

  • Teoh S and Ma K. PaintingClass. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. (667-672).

    https://doi.org/10.1145/956750.956837

  • Ragot N and Anquetil E. A Generic Hybrid Classifier Based on Hierarchical Fuzzy Modeling. Proceedings of the Seventh International Conference on Document Analysis and Recognition - Volume 2.

    /doi/10.5555/938980.939478

  • Kim M, Ryu J, Kim S and Lee J. Optimization of fuzzy rules for classification using genetic algorithm. Proceedings of the 7th Pacific-Asia conference on Advances in knowledge discovery and data mining. (363-375).

    /doi/10.5555/1760894.1760943

  • Berthold M and Hand D. References. Intelligent data analysis. (475-500).

    /doi/10.5555/938152.938175

  • Guetova M, Hölldobler S and Störr H. Incremental Fuzzy Decision Trees. Proceedings of the 25th Annual German Conference on AI: Advances in Artificial Intelligence. (67-81).

    /doi/10.5555/647621.732226

  • Halkidi M and Vazirgiannis M. Managing Uncertainty and Quality in the Classification Process. Proceedings of the Second Hellenic Conference on AI: Methods and Applications of Artificial Intelligence. (273-287).

    /doi/10.5555/645861.670286

  • Pedrycz W and Skowron A. Fuzzy and rough sets. Handbook of data mining and knowledge discovery. (680-689).

    /doi/10.5555/778212.778313

  • Hathaway R and Bezdek J. (2002). Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm. Pattern Recognition Letters. 23:1-3. (151-160). Online publication date: 1-Jan-2002.

    https://doi.org/10.1016/S0167-8655(01)00115-5

  • Suárez A and Lutsko J. (1999). Globally Optimal Fuzzy Decision Trees for Classification and Regression. IEEE Transactions on Pattern Analysis and Machine Intelligence. 21:12. (1297-1311). Online publication date: 1-Dec-1999.

    https://doi.org/10.1109/34.817409