• Hui Y, Yu M, Qi H, Gan Y, Li T, Li Y, Ren X, Ma S, Lu X and Wang Y. (2024). On the Feasibility and Benefits of Extensive Evaluation. Proceedings of the ACM on Management of Data. 2:4. (1-24). Online publication date: 1-Oct-2024.

    https://doi.org/10.1145/3677137

  • Chapman A, Lauro L, Missier P and Torlone R. (2024). Supporting Better Insights of Data Science Pipelines with Fine-grained Provenance. ACM Transactions on Database Systems. 49:2. (1-42). Online publication date: 30-Jun-2024.

    https://doi.org/10.1145/3644385

  • Grayson S, Aguilar F, Milewicz R, Katz D and Marinov D. A benchmark suite and performance analysis of user-space provenance collectors. Proceedings of the 2nd ACM Conference on Reproducibility and Replicability. (85-95).

    https://doi.org/10.1145/3641525.3663627

  • Shankar S, Garcia R, Hellerstein J and Parameswaran A. (2024). "We Have No Idea How Models will Behave in Production until Production": How Engineers Operationalize Machine Learning. Proceedings of the ACM on Human-Computer Interaction. 8:CSCW1. (1-34). Online publication date: 17-Apr-2024.

    https://doi.org/10.1145/3653697

  • Psallidas F, Agrawal A, Sugunan C, Ibrahim K, Karanasos K, Camacho-Rodríguez J, Floratou A, Curino C and Ramakrishnan R. (2023). OneProvenance: Efficient Extraction of Dynamic Coarse-Grained Provenance from Database Query Event Logs. Proceedings of the VLDB Endowment. 16:12. (3662-3675). Online publication date: 1-Aug-2023.

    https://doi.org/10.14778/3611540.3611555

  • Nakagawa T, Narita K and Kim K. How Provenance helps Quality Assurance Activities in AI/ML Systems. Proceedings of the Second International Conference on AI-ML Systems. (1-9).

    https://doi.org/10.1145/3564121.3564801

  • Wang Y, Yu M, Hui Y, Zhou F, Huang Y, Zhu R, Ren X, Li T and Lu X. (2022). A study of database performance sensitivity to experiment settings. Proceedings of the VLDB Endowment. 15:7. (1439-1452). Online publication date: 1-Mar-2022.

    https://doi.org/10.14778/3523210.3523221

  • Mansour E, Srinivas K and Hose K. (2022). Federated Data Science to Break Down Silos [Vision]. ACM SIGMOD Record. 50:4. (16-22). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3516431.3516435

  • Xin D, Miao H, Parameswaran A and Polyzotis N. Production Machine Learning Pipelines. Proceedings of the 2021 International Conference on Management of Data. (2639-2652).

    https://doi.org/10.1145/3448016.3457566

  • Kosyfaki C. Flow Provenance in Temporal Interaction Networks. Proceedings of the 2021 International Conference on Management of Data. (2893-2895).

    https://doi.org/10.1145/3448016.3450581