• Sheoran N, Chockchowwat S, Chheda A, Wang S, Verma R and Park Y. (2023). A Step Toward Deep Online Aggregation. Proceedings of the ACM on Management of Data. 1:2. (1-28). Online publication date: 13-Jun-2023.

    https://doi.org/10.1145/3589269

  • Li F, Wu B, Yi K and Zhao Z. (2019). Wander Join and XDB. ACM Transactions on Database Systems. 44:1. (1-41). Online publication date: 31-Mar-2019.

    https://doi.org/10.1145/3284551

  • Han X, Wang B, Li J and Gao H. (2018). Efficiently processing deterministic approximate aggregation query on massive data. Knowledge and Information Systems. 57:2. (437-473). Online publication date: 1-Nov-2018.

    https://doi.org/10.1007/s10115-017-1136-z

  • Zhao Z, Christensen R, Li F, Hu X and Yi K. Random Sampling over Joins Revisited. Proceedings of the 2018 International Conference on Management of Data. (1525-1539).

    https://doi.org/10.1145/3183713.3183739

  • Kamat N and Nandi A. (2018). A Session-Based Approach to Fast-But-Approximate Interactive Data Cube Exploration. ACM Transactions on Knowledge Discovery from Data. 12:1. (1-26). Online publication date: 23-Feb-2018.

    https://doi.org/10.1145/3070648

  • Cheng Y, Zhao W and Rusu F. Bi-Level Online Aggregation on Raw Data. Proceedings of the 29th International Conference on Scientific and Statistical Database Management. (1-12).

    https://doi.org/10.1145/3085504.3085514

  • Li F, Wu B, Yi K and Zhao Z. Wander Join. Proceedings of the 2016 International Conference on Management of Data. (615-629).

    https://doi.org/10.1145/2882903.2915235

  • Yu C and Boyd J. (2016). FB+-tree for Big Data Management. Big Data Research. 4:C. (25-36). Online publication date: 1-Jun-2016.

    https://doi.org/10.1016/j.bdr.2015.11.003

  • Qin C and Rusu F. Speculative Approximations for Terascale Distributed Gradient Descent Optimization. Proceedings of the Fourth Workshop on Data analytics in the Cloud. (1-10).

    https://doi.org/10.1145/2799562.2799563

  • Yang D, Cao J, Wu S and Wang J. (2015). Progressive online aggregation in a distributed stream system. Journal of Systems and Software. 102:C. (146-157). Online publication date: 1-Apr-2015.

    https://doi.org/10.1016/j.jss.2014.11.027

  • Wang Y, Luo J, Song A and Dong F. (2014). OATS. Distributed and Parallel Databases. 32:4. (467-505). Online publication date: 1-Dec-2014.

    https://doi.org/10.1007/s10619-014-7141-2

  • Qin C and Rusu F. (2014). PF-OLA. Distributed and Parallel Databases. 32:3. (337-375). Online publication date: 1-Sep-2014.

    https://doi.org/10.1007/s10619-013-7132-8

  • Yan Y, Chen L and Zhang Z. (2014). Error-bounded sampling for analytics on big sparse data. Proceedings of the VLDB Endowment. 7:13. (1508-1519). Online publication date: 1-Aug-2014.

    https://doi.org/10.14778/2733004.2733022

  • Wang J, Krishnan S, Franklin M, Goldberg K, Kraska T and Milo T. A sample-and-clean framework for fast and accurate query processing on dirty data. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. (469-480).

    https://doi.org/10.1145/2588555.2610505

  • Gan Y, Meng X and Shi Y. Processing online aggregation on skewed data in mapreduce. Proceedings of the fifth international workshop on Cloud data management. (3-10).

    https://doi.org/10.1145/2516588.2516589

  • Qin C and Rusu F. Parallel online aggregation in action. Proceedings of the 25th International Conference on Scientific and Statistical Database Management. (1-4).

    https://doi.org/10.1145/2484838.2484874

  • Qin C and Rusu F. Sampling estimators for parallel online aggregation. Proceedings of the 29th British National conference on Big Data. (204-217).

    https://doi.org/10.1007/978-3-642-39467-6_19

  • Shi Y, Meng X, Wang F and Gan Y. You can stop early with COLA. Proceedings of the 21st ACM international conference on Information and knowledge management. (1223-1232).

    https://doi.org/10.1145/2396761.2398423

  • Wang Y, Luo J, Song A, Jin J and Dong F. Improving online aggregation performance for skewed data distribution. Proceedings of the 17th international conference on Database Systems for Advanced Applications - Volume Part I. (18-32).

    https://doi.org/10.1007/978-3-642-29038-1_4

  • Wu Y, Sheng Q, Ranasinghe D and Yao L. PeerTrack. Proceedings of the 15th International Conference on Extending Database Technology. (586-589).

    https://doi.org/10.1145/2247596.2247672

  • Asiki A, Tsoumakos D and Koziris N. A DHT-Based system for the management of loosely structured, multidimensional data. Transactions on Large-Scale Data- and Knowledge-Centered Systems VI. (134-166).

    /doi/10.5555/2407076.2407081

  • Pansare N, Borkar V, Jermaine C and Condie T. (2020). Online aggregation for large MapReduce jobs. Proceedings of the VLDB Endowment. 4:11. (1135-1145). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402707.3402748

  • Wu S, Ooi B and Tan K. Continuous sampling for online aggregation over multiple queries. Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. (651-662).

    https://doi.org/10.1145/1807167.1807238

  • Condie T, Conway N, Alvaro P, Hellerstein J, Elmeleegy K and Sears R. MapReduce online. Proceedings of the 7th USENIX conference on Networked systems design and implementation. (21-21).

    /doi/10.5555/1855711.1855732