Nothing Special   »   [go: up one dir, main page]

DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

X. Yang

Xiaojing Yang

email: yangxiaojing89@163.com

L. Xiong

Liming Xiong

Beijing Institute of Technology

email: lmxiong@bit.edu.cn

0000-0002-3091-3252

Title:

Forbidden subgraphs for existences of (connected) 2-factors of a graph

PDF

Source:

Discussiones Mathematicae Graph Theory 43(1) (2023) 211-224

Received: 2020-02-14 , Revised: 2020-09-01 , Accepted: 2020-09-01 , Available online: 2020-10-16 , https://doi.org/10.7151/dmgt.2366

Abstract:

Clearly, having a 2-factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary condition for a graph to have a 2-factor. In this paper, we completely characterize the forbidden subgraph and pairs of forbidden subgraphs that force a 2-connected graph admitting a 2-factor (a necessary condition) to be hamiltonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbidden subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.

Keywords:

forbidden subgraph, even factor, 2-factor, hamiltonian

References:

  1. R.P. Anstee, An algorithmic proof of Tutte's $f$-factor theorem, J. Algorithms 6 (1985) 112–131.
    https://doi.org/10.1016/0196-6774(85)90022-7
  2. A.A. Bertossi, The edge Hamiltonian path problem is NP-complete, Inform. Process. Lett. 13 (1981) 157–159.
    https://doi.org/10.1016/0020-0190(81)90048-X
  3. J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
  4. Y. Egawa, Proof techniques for factor theorems, in: Horizons of Combinatorics, in: Bolyai Soc. Math. Stud. 17, (Springer, Berlin 2008) 67–78.
    https://doi.org/10.1007/978-3-540-77200-2_3
  5. J.R. Faudree, R.J. Faudree and Z. Ryjáček, Forbidden subgraphs that imply $2$-factors, Discrete Math. 308 (2008) 1571–1582.
    https://doi.org/10.1016/j.disc.2007.04.014
  6. R. Faudree and R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45–60.
    https://doi.org/10.1016/S0012-365X(96)00147-1
  7. F. Fujisawa and A. Saito, A pair of forbidden subgraphs and $2$-factors, Combin. Probab. Comput. 21 (2012) 149–158.
    https://doi.org/10.1017/S0963548311000514
  8. R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, (Plenum Press, New York 1972) 85–103.
    https://doi.org/10.1007/978-1-4684-2001-2_9
  9. R. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45–68.
    https://doi.org/10.1002/net.1975.5.1.45
  10. X. Yang, J. Du and L. Xiong, Forbidden subgraphs for supereulerian and Hamiltonian graphs, Discrete Appl. Math 288 (2021) 192–200.
    https://doi.org/10.1016/j.dam.2020.08.034

Close