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Abstract

Indoor localization is of great importance to several fields such as healthcare and asset tracking. However, many factors
(e.g., multipath propagations) impact the quality of signals which are used to perform localizations. As a consequence,
the precision and accuracy of the computed locations are heavily influenced. Therefore, the methodologies to compute
indoor locations always need continuous refinements in terms of those metrics including the time complexity. For the last
metric, It impacts the performance of mobile devices due to their limited resources. To address these challenges, a new
set of fingerprinting algorithms was presented in this paper called Fingerprinting Line-Based Nearest Neighbour. This set
shifts grid points potentially towards targets via a deterministic percentage. The running time of the set is upper bounded.
Moreover, this paper presents the following: 1) an upper bound in terms of distance errors for the proposed algorithms,
and 2) based on real experiments, the new algorithms (e.g., 90% shifting) improved the accuracy and precision, and had
lower distance errors probabilities compared to those for the nearest neighbour-based algorithms (e.g., by 106% and 76%,
respectively).
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1. Introduction
Recently, many researchers have been attracted by the massive
deployments of the Internet of Things (IoT) [1–3]. Among the
applications of IoT, location-based applications are significant
as they improve the quality of life for fields such as healthcare
and security [4]. Examples of these location-based services are
health care applications (e.g., locating patients with Alzheimer in
hospitals [4]).

Traditionally, technologies such as GPS are used to determine
the location of objects (e.g., automobiles and individuals) in out-
door environments. However, due to the complexity of the indoor
environments (e.g., walls and ceilings), these technologies are not
sufficient to localize an object (e.g., a medical equipment in hospi-
tals) in indoor environments [5]. In response to this limitation,

Wi-Fi, Bluetooth, Ultra-Wide Band, RFID, and Zigbee techno-
logies have been implemented [6, 7]. However, Wi-Fi indoor
localization system is common due to its low infrastructure cost
and high reliability for indoor environments [7, 8].

1.1. Motivation and Problem Background

Different techniques based on Wi-Fi signal’s characteristics were
used to estimate the locations of objects. These techniques include
the Time of Arrival (ToA), Time Difference of Arrival (TDoA),
Angle of Arrival (AoA), Channel State Information (CSI) and
the Receive Signal Strength Indicators (RSSIs) [9–11]. How-
ever, TDoA and AoA require more devices [12]. In addition,
non-RSSI-based techniques such as ToA, TDoA, and AoA have
reduced performance in Non-Line of Sight (NLOS) conditi-
ons [12]. Finally, while CSI offers higher performance compared
to RSSI, CSI can only be obtained through specific hardware
and is not practical for smart phones and other mobile devices
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[11]. Compared to other techniques, RSSIs can be implemented
without changes to existing wireless infrastructure [13]. However,
RSSI-based techniques are also susceptible to multipath fading
and noise [14]. In order to effectively deal with the noisy RSSI
measurements, Kalman’s filter has been implemented [15].

The indoor localization techniques that use RSSIs include ran-
ging and fingerprinting [6, 16]. Ranging is a technique which
involves trilateration. However, trilateration is not suitable for
indoor localization due to the high complexity of indoor environ-
ments [17]. Another approach, known as position fingerprinting,
is used to improve the indoor localization of a device and functions
more effectively within indoor environments that are more spati-
ally diverse [6]. Although fingerprinting requires additional setup
(i.e., offline stage), compared to non-RSSI techniques (e.g., AoA),
fingerprinting is not as susceptible to angle multipath [10, 18].

The metrics used to evaluate the indoor localization capa-
bilities are accuracy, precision, and time complexity. For the
first metric, accuracy is the distance error between the loca-
tion estimated and the actual location. Accuracy is computed
using the Euclidean Distance formula in 2-D. Another metric to
consider is precision, which refers to the distribution of the estima-
ted locations and the relative distances between them. Precision
is calculated by taking the standard deviation of the accuracy.
Finally, time complexity refers to the run time complexity of an
algorithm. The Big O Notation, which is a common metric that
computes time complexity, must be considered for fingerprinting
algorithms because of the limited resources of mobile devices
such as the lifetime battery. There are certain indoor positioning
systems that achieve high accuracy but have high computational
complexity and are not suited for mobile devices indoors [23].

One of the first approaches to take advantage of fingerprinting
is the RADAR system [19]. However, the average accuracy of
the system is considered low for indoor localization [19] [20].
Another related work done by Zhang et al. [21] implements new
Nearest Neighbour (NN)-based algorithms and considers the use
of the Path Loss exponents (PLe) as features for the grid points.
In other words, the authors replaced the RSSI fingerprints by the
PLe features. This is due to the fact that the RSSI measurements
are considered unstable due to noise [21]. However, the time
complexities of these algorithms were not considered [17].

A more recent work proposed by Hoang et al. [22] designs
and implements an extension of the KNN to address both the time
complexity and accuracy. While the work demonstrates that the
algorithm achieved a high accuracy, the precision of the algorithm
was not considered. Therefore, based on the above challenges,
there is a need to improve and consider accuracy, precision, and
time complexity for indoor localization. This articles focuses on
the NN-based approach.

1.2. Contributions Overview

In this paper, an extended set of the K-Nearest Neighbour (K-NN)
and the Nearest Neighbour version 3 (NNv3) [17, 19] referred
to as the Fingerprinting Line-Based Nearest Neighbor (FLBNN)
algorithms was proposed and developed [24]. The new set is based
on the shifting capability of the grid points to improve the accuracy
and precision. For the time complexity, the run time of the new set
is upper bounded. In addition, the new algorithms were proven to
have a theoretical upper bound for the distance errors.

Our real-world experiments demonstrated that the new set of
algorithms (e.g., 90% shifting percentage) achieved significant

accuracies compared to those for the Nearest Neighbour (NN)
algorithms such as the Soft-Range-Limited KNN (SRL-KNN)
and the Nearest Neighbor version 2 (NNv2) [17, 22]. The new set
also achieved higher precision compared to those for the same NN-
based algorithms such as the SRL-KNN and the Nearest Neighbor
version 4 (NNv4). Lastly, the new set of algorithms achieved
higher probabilities of being more accurate compared to those
for the same existing NN-based algorithms. This was measured
based on the Cumulative Distribution Function (CDF) for a set of
distances. All these experiments were based on the Cisco’s best
practices regarding the deployment of Access Points (APs).

The remainder of this article is mentioned as follows. Section 2
provides a detailed background which spans some preliminaries
and literature review. Section 3 proposes the new fingerprinting-
based methodology. Section 4 evaluates and analyzes the propo-
sed and existing algorithms. Section 5 discusses the findings from
the previous section. Lastly, Section 6 provides some concluding
remarks and recommends several future directions.

2. Background
2.1. Assumptions

The following assumptions were used in this research for an inte-
rior space: The grid points were deployed at a rectangular area
based on the Cisco’s best practices for indoor localization [25]; a
centroid was calculated based on its surrounding four grid points
and it was also considered a grid point; the Cartesian coordina-
tes were in 2-D [26]; a mobile phone was referred to as a target
node; the IEEE 8.2.11ac was the communication protocol used
between the target node and its surrounding Access Points (APs)
(i.e., anchor nodes); Cisco routers were used to collect the RSSI
measurements as they provide more granular data regarding RSSI
measurements than other types of routers [27]; the traditional Kal-
man filter was used because the distribution of the noise follows
Gaussian distribution [28]; linear functions were used as colle-
cted RSSI measurements did not change over time for each grid
point during the offline stage [28]; the time complexity of the
new algorithm was only analyzed for the online stage; the dista-
nces computed between the target node and the APs and between
the grid points and APs were based on the Path Loss Exponent
(PLe) [21]. These exponents were used as features instead of
the RSSI measurements as these measurements are considered
unstable [21].

2.2. Fingerprinting Stages

The fingerprinting technique consists of offline and online stages.
The offline phase involves the collection of signal information at a
known grid point in the indoor environment. RSSI measurements
are collected at each grid point to construct a radio map. Each
grid point has a set of RSSI values RSSIj = (RSSI1, RSSI2,
… , RSSIn) where j is the AP index and n is the number of
RSSI measurements collected at each grid point during the offline
phase. The online stage involves the calculation of RSSI measure-
ments in real-time and comparing them to the offline stage RSSI
measurements at each grid point [29]. Although the focus of this
work was on RSSI-based algorithms, several other techniques for
indoor localization including non-RSSI-based techniques were
explored in order to cover the breadth of the localization area.
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Table 1. Fingerprinting-Based Algorithms

Accuracy Precision Time Complexity

Nearest Neighbour [17, 19, 32] 2.94 m - 4 m ≈ 2 m O(g * m)

K-Nearest Neighbour [17, 19, 20, 32] 2.13 m - 3.25 m ≈ 1.3 m O(g * m)

Weighted K-Nearest Neighbour [20, 30] 1.66 m - 3.06 m X O(r * a * log(k) + d)

Weighted Fusion [17] [30] 1.54 m X X

Path-Loss-Based Fingerprint Localization [21] 3.5 m - 4 m < 5 m X

Dual-Scanned Fingerprint Localization [21] ≈ 3 m < 5 m X

Nearest Neighbour version 2 [17] ≈ 3 m ≈ 1.3 m O(t * m)

Nearest Neighbour version 3 [17] ≈ 3.75 m ≈ 1.9 m O(g * m)

Nearest Neighbour version 4 [17] ≈ 2.75 m ≈ 0.9 m O(t * m)

Soft-Range-Limited K-Nearest Neighbour [22] ≈ 0.60 m X O(g * m)

X:Unknown

2.3. Nearest Neighbour - Based Algorithms

Kalman’s filter and Particle filters are used to filter noisy RSSI
measurements. Particle filters are extended Kalman’s filters which
approximates the nonlinear functions to linear functions using
Taylor Series [13]. Fingerprinting can take advantage of the Kal-
man’s filter or Particle filter for effectively dealing with multipath
fading [14].

One of the first approaches to take advantage of fingerprinting
is the RADAR system, which uses the Nearest Neighbor algori-
thm (NN), the K-Nearest Neighbor algorithm (K-NN), and Wi-Fi
signals in order to estimate the indoor location of a user [19].
However, the average accuracy of the system was approximately
3 m, which is not ideal for accurately estimating indoor locati-
ons [19, 20, 22]. The NN’s accuracy depends on the number of
grid points that construct a radio map. The algorithm also does
not consider the areas between the grid points and instead chooses
a grid point that is the localized position. This leads to imprecise
and inaccurate localized positions. For K-NN, the accuracy of
the algorithm is influenced by the fact that noisy RSSIs in offline
and/or online stages may not allow the algorithm to choose con-
secutive K nearest grid points. As a consequence, high errors
in distances between computed centroids and target nodes (i.e.,
inaccuracies) may exist.

Another version of the K-NN algorithm referred to as Wei-
ghted KNN (WKNN) is based on Statistical Learning The-
ory [20, 22]. The algorithm calculates the weighted average of
RSSI-based distances between a set of selected grid points and
the current location [20, 22]. This approach improved the accuracy
from 3.12 m to 3.06 m, however, the accuracy is still relati-
vely low [20]. In addition, the accuracy of the approach was
not statistically verified [20]. Lastly, this algorithm inherits K-
NN’s drawback (i.e., nonconsecutive K nearest grid points). To
improve the accuracy metric, a new weighted fusion fingerprin-
ting algorithm was proposed [30]. With the proposed algorithm,
the accuracy was improved to approximately 1.5 m [30]. Howe-
ver, the design of the algorithm does not consider the precision
factor.

Another work by Zhang et al. [21] implements the Path-
Loss-Based Fingerprint Localization algorithm (PFL) and Dual-
Scanned Fingerprint Localization algorithm (DFL) in order to
improve the accuracy and precision of indoor localization [21].

However, the time complexities of these algorithms were not con-
sidered [17, 21]. Furthermore, PFL is impacted by outliers (i.e.,
RSSIs) and DFLs’ thresholds may direct the algorithm to inaccu-
rate areas. To examine time complexity and improve accuracy, the
work done by El Salti et al. [17] proposes the NNv2, NNv3, and
NNv4 algorithms [17]. However, the accuracy of indoor loca-
lization can be further improved, as well as the complexity of
NNv4.

A more recent work discusses the use of a Soft-Range-Limited
KNN algorithm (SRL-KNN) in order to address both the time
complexity and accuracy [22]. The conducted experiment demon-
strates that the SRL-KNN algorithm achieved a higher accuracy
compared to that for K-NN with the same time complexity [22].
While the work demonstrates that the algorithm achieved a high
accuracy, the precision of the algorithm was not considered as
part of the design. For the time complexity of most of the men-
tioned algorithms, it was not also considered. Lastly, and to the
best of our knowledge, the mentioned algorithms did not consider
the best practices regarding the deployment of the anchor nodes.
The goal of these best practices is to construct an efficient indoor
location system.

Table 1 compares the mentioned algorithms in terms of the fol-
lowing factors: 1) accuracy, 2) precision, and 3) time complexity.
As shown in the table, the time complexity of NN, KNN, and SRL-
KNN is O(g * m), where the term g refers to the number of grid
points and the termm refers to the number of RSSI measurements
collected during the offline stage (i.e., this number of RSSI mea-
surements depends on the number of APs) [17] [19] [22] [32]. The
WKNN runs in O(r * a * log(k) + d). The term r and a refer to the
number of observations, and the number of anchor nodes, respe-
ctively. For the term d and k, they refer to the number of physical
dimensions, and the number of nearest neighbours, respectively.
For the accuracy and precision measurements in the table, they
may change depending on the designed environments. Based on
these challenges, we proposed an algorithm that improves and
considers the accuracy, precision, and time complexity for indoor
localization to effectively estimate the location of a target indoors.
For the testing real environment, the Cisco’s best practices were
followed for the deployment of APs for indoor localization [25].
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3. Methodology
The Fingerprinting Line-Based Nearest Neighbor (FLBNN) algo-
rithm, proposed in our work, is an extension of the K-Nearest
Neighbor (K-NN) and the Nearest Neighbor version 3 (NNv3)
algorithms [17, 19]. In order to implement the FLBNN algori-
thm, an offline stage needs to be constructed. The offline stage
involves the collection of the Receive Signal Strength Indicator
(RSSI) measurements at each grid point in the indoor environ-
ment. The number of these RSSIs depends on the number of
deployed Access Points (APs). Afterwards, each of these RSSIs
were replace by the Path Loss exponents (PLe). This establishes
a radio map.

At the online phase, the FLBNN algorithm was executed.
Algorithm 1 presents the FLBNN algorithm in the online stage.
From Lines 1 to 10, the FLBNN algorithm searches for the k-
nearest neighbor (e.g., first, second, third and fourth nearest
neighbors).

Algorithm 1: Fingerprinting Line-Based Nearest Neigh-
bor

Input : G - A graph of y Grid Points with d PLe Values (PLe1, PLe2, PLe3...,
PLed), T - Target with d PLe values (PLe1, PLe2, PLe3..., PLed), and
dp - The displacement percentage value between 0 and 100.

Output: Q - the estimated location coordinates.
1 foreach i of y do
2 foreach j of d do
3 dist[j] = calculateDifference(T[j], G[i][j]);
4 end foreach
5 totalDistG[i] = calculateTotalEuclideanDistance(G[i], dist);

6 end foreach
7 sortByShortestDistance(totalDistG);
8 for k = 1 to 4 do
9 chosenGridPt[k] = totalDistG[k];

10 end for
11 S = calculateCentroid(chosenGridPt);
12 M = calculateMidpoint(chosenGridPt[0], chosenGridPt[1]);
13 N = shiftPoint(chosenGridPt[0], S, M, dp);
14 Q = calculateCentroid(N);
15 Return Q;

Line 9 searches for the nearest neighborZ to the target nodeT .
The nearest neighbor Z is added to the list of chosen neighbors.
Fig. 1(a) presents the Target point T located within some grid
points. For simplicity, the nearest grid points are G1, G2, G3, and
G4. However, in some cases, the points may not be necessarily
consecutive such as G2, G7, G10, and G19.

In Line 11, the algorithm computes the Centroid S from the
k-nearest neighbor. Afterward, in Line 12, the algorithm then
chooses the two closest grid points (i.e., first and second k-nearest
neighbor) to the Target point T (see Fig. 1(a), where G1 and G2
are the closest and second closest grid points to T respectively)
and calculates the Midpoint M between these grid points. From
Line 13, the algorithm displaces one or more points (i.e., G1, M ,
or S) based on a determined displacement percentage (dp) (see
Fig. 1(b)). In Fig. 1(b), the GridPoint G1 and Midpoint M are
displaced by 50%. The positions of the displaced point(s) and the
remaining point(s) are all stored in List N . Lastly, in Line 14,
the Centroid Q is computed and this centroid is considered the
localized position.

The time complexity of FLBNN is O(y * d) where y refers to
the number of grid points and d refers to the number of Received

(a)

(b)

Fig. 1. (a) Construction of the Triangle; (b) The Shifting of G1 and
M by 50%.

Signal Strength Indicators (RSSIs) collected at the online stage.
The FLBNN has the following property:

Theorem 3..1. Given a set of grid points that constructs a square
of grid points that cover a square area (A), the upper bound for
the distance errors of FLBNN (C)≤

√
2a, where the term a refers

to one of the sides of the triangle constructed by FLBNN and a 6=
r (hypotenuse of this triangle) .

Proof. Assume that the square area consists of the following
set of Grid Points (Gp) = {G1, G2, ..., Gn}, where the term
n refers to the total number of grid points. As for one case, the
number of grid points (G

′
) per row (rw) is even (i.e., G

′
= 2l,

where the term l ∈ Z+). The worst case for the distance errors
for the FLBNN algorithm is when the centroid (S) is computed
from the Set (Se) =

{
G1, G2l, Gn − (2l − 1), Gn

}
. Based on

FLBNN, Gi ∈ Se is the nearest neighbour. Therefore, the Target
node T is within the Triangle ∆GiMS (see Fig. 1(a)). As part
of the worst case, T is assumed to be located at one side of the
hypotenuse (r). Furthermore, Gi (i.e., the closet grid point to T ),
M , and S are all located on the other side of r (i.e., the shifting
percentage (sp) = 100% forM and for eitherS orGi). Assume in
Fig. 1(b), the node T is located at the original position of G1 and
M and G1 are located at the position of S. The localized position
Q = (xS +xM +xGi)/3, (yS +yM +yGi)/3). Since xS = xM

= xGi and yS = yM = yGi , then ( 3xM
3

, 3yM
3

) = (xM , yM ). In
addition, r =

√
a2 + a2. Therefore, r =

√
2a. As for the other

case, a similar proof applies when G
′

per rw is odd (i.e., G
′

=
2l + 1, where the term l ∈ Z+). The worst case for the distance
errors for the FLBNN algorithm is when the term S is computed
from the Set (Se) = {G1, G2l + 1, Gn − 2l, Gn}.

There are a number of differences between FLBNN and K-
NN and NNv3. First, once the midpoint is calculated between the
nearest Grid Point Gi, Centroid S, and Midpoint M , the FLBNN
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algorithm has the ability to displace one or two of these points
towards either Gi, S, or M by a specific percentage. For exam-
ple, the algorithm can displace Gi towards S or the algorithm can
displace M and S towards Gi. If Grid Point Gi is displaced by
100% towards Centroid S, Grid Point Gi is directly shifted to
the same coordinates as Centroid S and Centroid Q is computed.
Another example is that Grid PointGi can be shifted halfway tow-
ards Midpoint M when the displacement percentage is equal to
50% and then Centroid Q is computed. Second, FLBNN compu-
tes two centroids (i.e., Centroid S and Centroid Q) where K-NN
and NNv3 compute one and three centroids; respectively. Third,
the distance errors of FLBNN have a theoretical upper bound of
(C) ≤

√
2a, where the term a refers to one of the sides of the

triangle constructed by FLBNN and a 6= r (hypotenuse of this
triangle).

4. Findings (Analysis and Evaluation)
4.1. Experimental Design Model

The real-world design was used to demonstrate that the Fin-
gerprinting Line-Based Nearest Neighbor (FLBNN) algorithm
is considered precise and accurate. The design was based on a
Google Pixel phone (i.e., target device) with four Cisco Wireless
Access Points (APs) from the set of all deployed APs at Sheridan
College (i.e., this is part of Sheridan College’s Wi-Fi system). The
phone received 5 GHz Wi-Fi signals from the APs. The design
was also based on a 2.5 m × 12.5 m area with twelve grid points
and five centroids in Room S144 at the S-Building. The distance
between each pair of neighbouring grid points was 2.5 m. The
distance between each pair of neighbouring centroids was also
2.5 m. Each AP was distanced at least 22 feet or 6.71 meters away
from each other and their locations were unrevealed for confiden-
tiality reasons. The design of the experiments was based on the
Cisco’s best practices for AP spacing for indoor localization [25].

There is a monotonic relationship between the distance (i.e.,
from the AP to the target) and the Receive Signal Strength Indi-
cators (RSSIs) [25]. Therefore, based on our experiments, each
grid point needs to be distanced 2.5 m away from each of the adja-
cent grid points in order to preserve the monotonic behavior of the
RSSIs and create different fingerprints (i.e., RSSIs) for each of the
grid points. In addition, the grid point space should be designed
within a convex hull [25]. The convex hull is formed by the APs
around the perimeter of the hull. Additionally, each AP should be
distanced at 4.27 m away from the grid point space [25]. When
the target is less than 4.27 m away from an AP, short range propa-
gation anomalies occur [25]. Therefore, the monotonicity of the
RSSI and the distance relationship degrades, and thus, the RSSIs
cannot be used to accurately predict the distance from the Target
node to an AP.

During the offline stage, the target device was stationed at each
grid point or centroid and collected thirty-five RSSI measurements
filtered via Kalman’s filter. The collection of those measurements
was done during daytime on September 7th, 2019. Moreover, the
duration for the collection of the thirty-five RSSI measurements
at each grid point for each AP was approximately five minutes.
These thirty-five RSSI measurements for each of the four APs
were used to calculate a single Path Loss exponent (PLe) value.
Therefore, each grid point (or centroid) was fingerprinted with
four PLe values [21]. The time to construct the entire radio map
was approximately three hours (i.e., this time also included the

time to move the phone between a grid point and another point
and to log this information). Notice that the use of PLe values
was done to deal with the challenge regarding the fluctuations of
RSSIs introduced by different factors (e.g., multipath fading).

In the online stage, four testing locations (1.937, 3.5), (2.437,
9.5), (2.937, 6.5), and (3.437, 12) were chosen randomly in Room
S144 where thirty-five filtered RSSI measurements were colle-
cted for each AP for the duration of five minutes and the total
time for all these randomized positions was approximately thirty
minutes. This time also includes the time to move the phone from
one testing point to another point and also the log time for the
RSSIs. Based on these measurements, the accuracy and preci-
sion for the following algorithms were evaluated: 1) K-Nearest
Neighbor (KNN) [17], 2) Weighted KNN (WKNN) [20], 3) NN
version 2 (NNv2) [17], 4) NN version 3 (NNv3) [17], 5) NN ver-
sion 4 (NNv4) [17], 6) Path-Loss-Based Fingerprint Localization
(PFL) [21], 7) Dual-Scanned Fingerprint Localization (DFL) [21]
and, 8) Soft-Range-Limited KNN (SRL-KNN) [22].

4.2. Performance Metrics and Statistical Analysis

Each of these algorithms and our proposed algorithm were com-
pared in terms of their accuracy and precision. During the online
stage, each algorithm ran thirty-five times for every test point,
and consequently, the metric values for each run were averaged.
For the accuracy metric, the distance error between the estima-
ted location and the actual location were computed. Moreover,
precision refers to the distribution of the estimated locations and
the relative distances between them. Regarding the cumulative
probability distribution (i.e., Cumulative Distribution Function
(CDF)), it represents the probabilities of locating a target within
a range of distance values (e.g., the probability that the estimated
location is within 1.5 m to 2 m of the actual target). The normal
distribution of the data was verified via Shapiro–Wilk test with
a 95% confidence level. Afterwards, Mann–Whitney U test was
used to verify the statistical significance between the proposed
and existing algorithms.

4.3. Accuracy and Precision Analysis

The existing fingerprinting-based algorithms were first compared
to FLBNN in terms of the accuracy metric (see Fig. 2(a)). FLBNN
with a displacement percentage of 10% - 90% achieved the highest
accuracy compared to those for the existing fingerprinting algori-
thms. The K-NN, WKNN, NNv3, and NNv4 algorithms achieved
similar accuracies and were considered the second highest in
terms the accuracy compared to those for DFL, PFL, SRL-KNN,
and NNv2 algorithms. In addition, the DFL algorithm achieved
the lowest accuracy.

Fig. 3 supports the observations obtained in Fig. 2(a) in terms
of the cumulative probability distribution for the accuracies. Fig. 3
demonstrates that the probability to achieve accuracy within one
meter was significantly higher for the set of FLBNN compared to
those for the other existing algorithms. The probability to achieve
accuracy within 2.5 m for most algorithms reached 100%.

From Fig. 2(b), the FLBNN algorithm was the most precise
algorithm when the shifting percentage for the grid point was
specified between the range 30% and 40%. The precision was low-
ered when the shifting percentage was close to 90%. The second
most precise algorithm was the NNv3 algorithm which was more
precise compared to those for its other versions (i.e., NNv2 and
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(a)

(b)

Fig. 2. (a) The Localization Algorithms in Terms of Accuracy;
(b) The Localization Algorithms in Terms of Precision.

Fig. 3. Cumulative Probabilities in Terms of Accuracies for the Pro-
posed and Existing Algorithms.

NNv4). The same applies to SRL-KNN and K-NN where the
variant of K-NN (i.e., WKNN) achieved higher precision. For the
DFL algorithm, it achieved the worst precision.

5. Discussion
A possible explanation for the behaviour in terms of the accuracy
for FLBNN and some of the existing algorithms is mentioned
as follows. The new algorithm shifts the closest grid point and
the midpoint possibly closer to the target node. The assumption

made here is that the target is not located at a grid point, centroid,
or midpoint. The algorithm chooses four grid points that are the
closest to the target and calculates the Centroid S. The algorithm
then chooses the two closest grid points among the four selected
grid points. In this case, the algorithm shifts the nearest one of the
two grid points and the Midpoint M closer to Centroid S, where
S is closer to the target than both the grid points and the midpoint.
The target is generally closer to Centroid S than the midpoint or
nearest grid point. As a result, the Midpoint M and the nearest
grid point were shifted to move them closer to the target node.
Therefore, the calculated Centroid Q in these experiments was
closer to the target, and thus, the accuracy of the new algorithm
was improved.

For the PFL and NNv2 algorithms, they only choose the grid
points but they do not consider the areas between the grid points.
For K-NN algorithm and its variants SRL-KNN and WKNN algo-
rithms, they consider a general approximation of the grid points
(i.e., centroids) as their main functionality. Lastly, NNv3 and
NNv4 do not consider the size of the triangles constructed by the
additional centroids and the grid points.

A possible explanation for the precision behaviour of FLBNN
and some of the existing NN-based algorithms is mentioned as
follows. The new algorithm calculates the estimated locations
within a particular area of the space (i.e., triangle). The shifting
of the grid points especially when the shifting is close to 40%
constructs a small triangle where the localized points are within
this small area. Hence, the distribution of those points in this
experiment was more concentrated which lead to high precision.

The NNv3 algorithm achieved a higher precision compared to
those for the existing algorithms because NNv3 is not influenced
as much by Receive Signal Strength Indicators (RSSI) fluctuations
since the algorithm chooses the four closest grid points instead of
initially the closest centroid or closest grid point. Finally, SRL-
KNN achieves a lower precision compared to that for WKNN
because SRL-KNN chooses its four closest grid points based on
a threshold surrounding the previous localized point calculated.
Thus, a change in RSSI measurements significantly impacts the
change in the four closest grid points.

This article considered several significant design factors for
fingerprinting-based Localization to improve the accuracy and
precision for indoor location services. The centroid method is one
factor that is considered a coarse localization approach. However,
with the integration of fingerprinting which is another factor, the
coarse localization becomes fine localization. The integrated beh-
aviours support the literature in terms of the integration between
fingerprinting and geometrical methods to improve the performa-
nce of localization approaches [31]. In addition, the construction
of confined areas (i.e., triangles) further supports the idea of the
use of triangles in localization to improve the localization per-
formance [17]. However, this paper enriches the literature with
the points shifting to reduce the area of the constructed triangles.
As a result, the distance errors and the size of their distributions
are further reduced within the triangles. The implementation of
the Path Loss exponent (PLe) further improve the results as the
RSSIs are considered unreliable [21]. Because of only one square
of four grid points and a triangle were considered, we focused on
the implementation of a graph-based model instead of a tree-based
model.

A drawback was captured when the experiments were condu-
cted. Because of the adoption of the centroid idea, the chosen grid
points may not be necessarily consecutive due to some similarities
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in the RSSI measurements across the grid points. As a consequ-
ence, some calculated centroids may have possibly long distance
errors. However, the shifting of points still reduce the distance
errors and the size of their distributions as there is a possibility
that the computed locations are further shifted towards the target’s
location.

6. Conclusion
6.1. Summary

The quality of life for several fields such as security and health care
is significantly improved by location-based services [4]. Among
the several applications that benefit from these services, the loca-
lization of seniors is of great importance. Especially, seniors who
suffer from Dementia may have difficulty in remembering how to
navigate within a facility. Therefore, localization enables doctors
and nurses to assist those seniors [33].

Several geometrical localization techniques [9] [10] are consi-
dered insufficient for accurate and precise indoor localization [10].
In order to solve these issues, fingerprinting-based techniques [22]
are not as susceptible to angle multipath and do not need additio-
nal hardware. However, the performance of these techniques are
always need to be improved.

This article demonstrates that the shifting capability of the
points significantly improves the accuracy and precision for
indoor localization. This goal was achieved by a novel set of
fingerprinting-based algorithms for indoor localization. The new
set of algorithms is referred to as the Fingerprinting Line-Based
Nearest Neighbour (FLBNN) and it has the ability to shift grid
points to compute centroids close to target nodes.

An analysis of the algorithms revealed that they have a the-
oretical upper bound for their distance errors. In addition, the
real-world results based on Sheridan College’s Wi-Fi system
demonstrated the following: 1) the FLBNN algorithms outper-
formed some existing Nearest Neighbour (NN)-based algori-
thms [17, 20–22] in terms of the accuracy and precision (e.g.,
by 68% for the accuracy and by 64% for the precision), and 2)
the new algorithms had lower probabilities in terms of the dista-
nce errors compared to those for the same studied NN algorithms.
Lastly, FLBNN ran in O(y * d) (where, y refers to the number of
grid points and d refers to the number of Receive Signal Strength
Indicator (RSSI) measurements collected at the online stage. The-
refore, the proposed algorithms are considered reliable for indoor
location services. When mobility is considered for target nodes,
the reliability is still possibly achieved due to the points shifting
capability of the new algorithm.

6.2. Limitations

The first limitation of this study is that the deployed grid points
space was relatively small and only few centroids existed within
the space. However, the grid points space was designed in such
a way to follow the Cisco’s best practices for Access Point (AP)
spacing, where the space should ideally be designed within the
convex boundary formed by all four APs [25]. In addition, If more
grid points were deployed beyond the specified number of grid
points, the similarities between the RSSI features will increase
and they will not be useful anymore.

The second limitation is that only four test points were used
during the experiments. The third limitation is that there was a

small set of APs that were considered in the experiments as the
other surrounding APs did not follow the Cisco’s best practises.
The fourth limitation is that we did not explore the accuracy and
precision when varying Wi-Fi environment settings such as chan-
nel selection, radio frequency selection, and physical ambience as
those APs were only configured by Sheridan College’s network
architect. Finally, we only experimented with Wi-Fi technologies
and did not explore with other technologies such as Bluetooth and
Zigbee.

6.3. Future Work

The limitations of the conducted experiments indicate several
recommendations as follows. One recommendation is to work
with a larger grid points space to further explore the performance
of the proposed and existing algorithms. Another recommen-
dation is to consider different Wi-Fi environment settings (e.g.,
channel selection). This will also include the deployment of Blu-
etooth beacons. Lastly, new variations of the FLBNN algorithms
will need to be considered. Especially, the integration of the
new set of algorithms with Machine Learning algorithms (e.g.,
Support Vector Machine (SVM)) to determine the best shifting
displacements of the points.
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