Nothing Special   »   [go: up one dir, main page]

메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG

주제분류

모델 구조 비교연구 및 해석

...

저널정보

저자정보

표지
이용수
내서재
1
내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

이 논문의 연구 히스토리 (3)

초록·키워드

오류제보하기
In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model.
In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.

목차

Abstract
1. 서론
2. 3차원 스캐너를 이용한 얼굴 형상 취득 및 전처리 과정
3. 3차원 얼굴인식 모델 설계
4. 최적화 알고리즘을 이용한 모델 파라미터 최적화
5. 실험 및 결과고찰
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-001546898