Nothing Special   »   [go: up one dir, main page]

Published January 10, 2024 | Version Version 01
Dataset Open

Live fuel moisture content estimates in the Western USA using radiometer-radar-lidar synergy

  • 1. Microwaves and Radar Institute, German Aerospace Center (DLR)
  • 2. Institute of Geography, University of Augsburg
  • 3. Image Processing Lab, Universitat de València
  • 4. Earth Observation and Ecosystem Modelling lab, SPHERES research unit, Université de Liège (ULiege)
  • 5. CommSensLab, Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC), and the Institut d'Estudis Espacials de Catalunya (IEEC)
  • 6. ASPIRE Visiting International Professor, UAE University
  • 7. CommSensLab, Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC)
  • 8. Institut d'Estudis Espacials de Catalunya (IEEC)
  • 9. University of Cambridge, Department of Geography
  • 10. Biospheric Sciences Laboratory, NASA Goddard Space Flight Center
  • 11. Earth System Sciences Interdisciplinary Center, University of Maryland
  • 12. Civil and Environmental Engineering, Massachusetts Institute of Technology

Description

Publication: Chaparro et al. (2024)

This dataset contains estimates of Live Fuel Moisture Content (LFMC) in the Western United States. LFMC is the percentage of vegetation water mass over the dry biomass of the plants. Here, LFMC is retrieved by isolating the water component of the passive microwaves vegetation optical depth (VOD) signal at three frequencies: L-band (1.4 GHz), X-band (10.65 GHz) and Ku-band (18.7 GHz). Each frequency represents a different canopy sensing depth. To isolate LFMC from VOD, auxiliary information to account for the biomass and structure of the vegetation has been used: radar backscatter data from Sentinel-1 and canopy height data from GEDI/Sentinel-2. The dataset spans between April 2015 and December 2018 for L- and X-bands, and between April 2015 and July 2018 for Ku-band retrievals.

Details:

  • Period: April 2015 - December 2018 (daily resolution)
  • Gridding: 0.25º
  • Grid type: lat/lon
  • Size: 73 (lat) x 104 (lon) x 1371 (time)

Files

Files (249.9 MB)

Name Size Download all
md5:84bc47988d6a66270bd01fb736323c97
83.3 MB Download
md5:414aa7d29fc4dc42b25b8fc53b47a3bc
83.3 MB Download
md5:9317be2ad2e7c4be868d80c17bb0cbd9
83.3 MB Download

Additional details

Related works

Is derived from
Publication: 10.1016/j.rse.2024.113993 (DOI)

Funding

Ramón Areces Postdoctoral Fellowship XXXIII
Fundación Ramón Areces
MIT Spain Seed Fund LCF/PR/MIT19/51840001
Massachusetts Institute of Technology
MIT-Germany Seed Fund -
Massachusetts Institute of Technology
MIT-Belgium Seed Fund -
Massachusetts Institute of Technology
AI for complex systems: Brain, Earth, Climate, Society AI4CS CIPROM/2021/56
Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital
PID2020-114623RB-C32 MCIN/AEI/10.13039/501100011033
Ministerio de Ciencia e Innovación
European Regional Development Fund RTI2018-096765-A-100
European Union

Dates

Created
2024-01-10