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ABSTRACT 

 
The effectiveness of a Business Intelligence System is hugely dependent on these three fundamental 

components, 1) Data Acquisition (ETL), 2) Data Storage (Data Warehouse), and 3) Data Analytics 

(OLAP). The predominant challenges with these fundamental components are Data Volume, Data Variety, 
Data Integration, Complex Analytics, Constant Business changes, Lack of skill sets, Compliance, Security, 

Data Quality, and Computing requirements. There is no comprehensive documentation that talks about 

guidelines for ETL, Data Warehouse and OLAP to include the recent trends such as Data Latency (to 

provide real-time data), BI flexibility (to accommodate changes with the explosion of data) and Self-

Service BI. This research paper attempts to fill this gap by analyzing existing scholarly articles in the last 

three to five years to compile guidelines for effective design, implementation, and assessment of DW, ETL, 

and OLAP in BI.  
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1. INTRODUCTION  
 

“Business intelligence (BI) is an umbrella term that includes the applications, infrastructure and 
tools, and best practices that enable access to and analysis of information to improve and 

optimize decisions and performance” [1].  Data Acquisition, Data Storage, and Data Analytics 

are the primary components of a BI system, and for it to be successful, practical design and 

implementation of these three components are critical. Source systems such as OLTP records 
business events. ETL stands for Extract, Transact, Load. It is a set of tools and processes to 

extract the data from source systems to load into a data warehouse after transformation. Data 

warehouse (DW) is the core component of a BI system where data from various sources are 
centrally stored. OLAP stands for Online Analytical Processing and is responsible for analyzing 

the data warehouse data to aggregate and present it in a multi-dimensional format to answer 

“forecasts.” The effectiveness of a BI System is hugely dependent on these three fundamental 
components Data Acquisition (ETL), Data Storage (Data Warehouse), and Data Analytics 

(OLAP). There is no comprehensive documentation that talks about guidelines for ETL, Data 

Warehouse and OLAP to include the recent trends such as Data Latency (to provide real-time 

data), BI flexibility (to accommodate changes with the explosion of data) and Self-Service BI.  
 

The purpose of the article is to analyze existing scholarly articles in the last three to five years to 

compile guidelines for effective design, implementation, and assessment of DW, ETL, and 
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OLAP in BI. The drivers for the need for this “updated” guidelines are agility, the next 
generation of data, cloud computing, real-time data, situation awareness, and self-service. The 

new design, implementation, and assessment guidelines of DW, ETL, and OLAP would help 

decision-makers and BI IT practitioners in proactively avoiding the “known” pitfalls.  This 

approach also helps BI practitioners prepare their systems to be flexible to accommodate the data 
explosion, and to move from an IT-Lead BI to IT-enabled BI. This paper is organized into three 

main sections. The first section of this paper describes the challenges associated with all three 

fundamental components (Data Acquisition, Data Storage, and Data Analytics) of BI. The 
second section provides guidelines for design and implementation. The third section provides an 

assessment methodology for ongoing effectiveness. 

 

2. RELATED WORK 
 
The limitation of traditional computing techniques is a significant limitation in dealing with large 

volumes of data [2]. Santos, Silva, and Belo (2014) highlighted the dealing of vast data 

sets in a short time slot for data warehouse systems as a challenge due to the need for 

massive computational resources and storage requirements [3]. Bousty, Krit, Elasikiri, 

Dani, Karimi, Bendaoud, and Kabrane (2018) have recommended continuous updates of server 

and storage processing capacities to tackle the new data requirement [4]. Their research also 

recommends utilizing cloud-based solutions to keep the processing capabilities elastic to reduce 

additional investments. Vo, Thomas, Cho, De, and Choi (2018) recommends three new features 
for the next generation BI, Operational BI (Near Real-time), Situational BI (Real-time), and Self 

Service BI ( reduced dependency of IT Staff) [5]. Santos et al. (2014), in their research, 

recommended a grid environment-based scheduling solution for small to medium ETL 
processing needs [3]. Extensive ETL processing continues to remain a challenge.  Separation of 

processing for OLTP and OLAP, the use of specialized databases such as NoSQL, Columnar, In-

Memory-DB, and Hybrid-DB appears to be common recommendations from most of the studies. 
 

3. THE MAIN CHALLENGES FOR DATA ACQUISITION, DATA STORAGE, 

AND DATA ANALYSIS 
 

The main challenges for Data Acquisition, Data Storage, and Data Analysis are Data Volume, 

Data Variety, Data Integration, Complex Analytics, Constant Business changes, Skill sets, 
Compliance, Security, Data Quality, and Computing. The following paragraphs present to 

explain these challenges specific to all these three (ETL, DW, and OLAP) fundamental 

components. 

 

3.1. ETL 
 
ETL specific challenges are in deciding relevant and non-relevant data for extract, minimizing 

the performance overhead on the source system, flexibility with the data conversion, data clean-

up, and balancing the real-time and batch loading. 

 

 The extraction process has the potential to cause performance impacts on the source 
system [6]. 

 Source data systems typically are of different types. Standard formats are relational 

databases, flat files, non-relational databases (IMS, NoSQL). The extraction process 

should be able to read these diverse data types, and the transformation process should be 
able to apply complex rules in converting these to a single standard format for loading. 
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 The loading process typically happens as incremental batch jobs. These batch jobs get 

scheduled with minimum intervals to facilitate near-real-time load or with no intervals to 
support real-time loading. Completion of one scheduled before the start of another 

schedule is critical and mandates the implementation of audit trails to store all data 

changes associated with the batch job. 

 The space efficiency is nearly zero (Guo, Yuan, Sun, & Yue, 2015) for traditional ETL 

due to the redundant storage of the data for the staging phase. Frequent re-loading takes 
place along with the application logic changes causing more data redundancy [7]. 

 Lack of a standard conceptual model to represent ETL processes is a real problem [8]. 

This problem makes ETL processes less flexible, and especially with every application 

logic change and the addition of new data sources, it results in a significant amount of 

work and reworks. 
 

3.2.  Data Warehouse 
 

Data Warehouse specific challenges are mainly related to storing a massive amount of data. Data 

integration, duplication, cleansing, and timing of the data often add the complexities in 

maintaining the data quality. Suboptimal decisions are often due to these data quality issues. 
Complexities with volume (emergence of IoT), velocity (real-time), and variety (disparate source 

systems) of data puts a significant dependency on data quality. Khoso (2016), has estimated the 

growth of the total amount of data in use to shoot up to 44 Zettabytes in 2020 [9]. If we take 
healthcare as an example, volume (electronic health records, patient data like biometrics, variety 

(doctor notes, images), and velocity (IoT, wearables) have to ensure data quality to help with 

patient health, detection of diseases and cost-efficiency. The capability of the DW system to 
support real-time and on-demand workloads are quintessential. However, availability and 

performance issues post a significant barrier to supporting real-time workload [10]. No 

simplified DW scalability solution exists to tackle the explosion of data growth. Reporting on 

compliance (like GDPR) and security needs a tremendous amount of changes in the data 
warehouse architecture. Complexities exist with the Query-response service level agreement 

(SLA) adherence for all sizes of data ranging from single-digit terabyte-sized database to 

petabyte sized database. 
 

3.3.  OLAP 
 
OLAP specific challenges include sophisticated analytics and different data types. The 

limitations of the underlying DBMS and compatibility put additional complexity to advanced 

analytics. Storing of analytic data inside the data warehouse or in a separate analytic database is a 
crucial design decision [10]. Computing requirements for advanced analytics are high, and the 

ability to accurately estimating the compute requirements is still a difficult task to answer. 

Variety and volume of the data make the data visualization and the dashboards to be highly 
dependent on IT staff.  

 

4. DESIGN AND IMPLEMENTATION GUIDELINES FOR ETL, DW, AND 

OLAP 
 

The core of the design principle of ETL, DW, and OLAP is to maintain its life cycle as a 
continuous loop covering conceptual, logical, physical, and starting again with the conceptual. 

Preference of a requirements-driven (demand-driven) approach over data-driven (supply-driven) 

approach for defining data warehouse requirements. Jukic and Nicholas (2010) have proposed 

the following requirements-driven framework [11]:  
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1) Data warehouse requirements collection and definition with end-user business analytical needs 
in the picture, 2) ETL design and development, 3) front-end application design and development, 

and 4) use/maintenance and growth with a feedback loop to step one. 

 

ETL design should facilitate the flexibility (batch mode vs. real-time), metadata repository 
(source data and target data relationship map), and data integration (proactively fit data 

variations). Execution Sequence (which to run first?) and Execution Schedule (When to run?) 

and Recovery plan (fallback solution) are the three fundamental principles to be included [8]. 
“schema on read” and “schema on write” design needs to be balanced. If the source data types 

are constant, schema on write would be an ideal choice. If the source data types are unknown and 

continually changing, “schema on read” would be acceptable. ELT (Extraction, Load, and 
Transform) instead of ETL can be more useful for “schema on read” use cases. 

 

Going with the ETL Tool instead of custom-built routines is highly recommended for most of the 

use cases [12]. The downside for TOOL based approach versus custom-built approach is mostly 
with the license cost and sometimes with the lack of flexibility (depending upon the business 

needs). In addition to cost, the other attributes that need to look at with an ETL tool are real-time 

refresh capabilities, metadata management, performance optimization capabilities, simplified 
upgrades (avoid forklift upgrades), and broad compatibility. Staging, DW Database, Data Marts, 

Operational Data Store [13], and Aggregation layer [14] form the conceptual architecture of a 

well-designed DW environment. Metadata repository with Technical (table structure) metadata 
and Business (business rules) metadata, as per Lam (2004), can help with cost optimization and 

faster implementation [15].  

 

A real-time data warehouse is a key trend and transforms how a business run. Change Data 
capture should be part of the solution as it cares only about the changed data at the source and 

propagates the data changes to the target in an efficient manner. Data reduction techniques such 

as data virtualization can avoid data redundancy and optimize storage needs indirectly, helping 
with the performance and data integrity. A virtual layer to read the disparate source data from 

one place as virtual tables (utilizing heterogeneous database link / ODBC) could provide 

additional efficiency. Data virtualization also minimizes the complexities of the data staging 

layer.  
 

Data warehouse appliance (Netezza, Teradata, Oracle Exadata), and Cloud computing (IAAS and 

SAAS) are the standard solutions for an accelerated start. “Clouds provide hefty infrastructure 
quickly, cheaply, and flexibly” [10]. Redshift offering from Amazon Web Services, Microsoft 

Azure’s SQL DW service, and similar offerings from IBM and Google Cloud has evolved in the 

last few years and presents a viable alternative for traditional and on-premises implementations. 
Including Data Lake, NoSQL, and Hadoop as an extension of the traditional relational data 

warehouse and data mart databases as an answer to  Big Data Analytics. Flexible deployments 

(including mobile), self-service IT, agile approach, high level of automation at all levels, 

analytics sandbox, are the norms of a modern data warehousing. 
 

OLAP design should facilitate multiple designs to support departmental level needs. Ma, Chou, 

and Yen (2000) emphasizes the use of OLAP, Artificial Intelligence, and Visualization interfaces 
as determining a factor for the success of data warehousing [16]. Aggregate capability, analysis 

and deriving capability, fast online access, and interactive querying capability are the four 

primary characteristics of OLAP [16]. Data warehouse needs to be optimized to support both 
reporting and advanced analytics to avoid storing the analytical data in another database. The in-

database analytics feature of the database combined with ANSI-SQL analytical capabilities gets 

heavily utilized with this approach of storing analytical data in the data warehouse database. The 

crux of the OLAP design is to eliminate IT dependency and making it self-service BI. Russom 
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(2009) recommends using Service Oriented Architectures or Web Services as data warehouse 
options [10].  

 

5. ASSESSMENT METHODOLOGY FOR ETL, DW, AND OLAP 
 

Data Quality, System Quality, User Experience, and Cost-Efficiency characterizes an assessment 
model for ETL, DW, and OLAP. The standard measures of data quality are accuracy, 

consistency, comprehensiveness, and completeness of the data [17]. The standard measures of 

system quality are scalability, flexibility, reliability, response time, and integration [17]. The 
space efficiency metric determines the “data redundancy” and other sub-optimal data storage 

methods. The adoption of “data reduction” techniques (data virtualization, ELT) maximizes 

storage efficiency. This metric can be monitored and reported periodically to fine-tune the 

transformation process (ETL).  
 

Service Level Agreement guidelines for every layer, such as: 

 
1. Data load time window: The documentation of Data latency requirements. ( 

example: The loading of Claims data within 2 hours of source addition) 

2. Query performance: Documented expectation on query retrieval time. Specific 
examples would be, 

a.  2 seconds of response in ODS 90% of the time,  

b. 1-2 minutes of response in data marts,  

c. 1-2 hours of response time for canned queries against EDW 
d. agreed-upon response times for ad-hoc analysis 

e. operational and disaster recovery  

i. Recovery Time Objective (example: 24 hours) 
ii. Recovery point objective (example: 2 seconds) 

 

Any deviation in achieving SLAs would trigger the fine-tuning of ETL, DW, and OLAP 
processes for continuous improvement opportunities. Metrics such as cost per terabyte (with 

storage, software, hardware, and people cost integrated) would not only help internal department 

level chargeback but also for evaluating newer hardware/technology changes. Data Archive and 

Purge policy in place to keep the data size in check and to incorporate storage tiering, cold, 
warm, and hot for performance and cost perspectives based on data usage (most used for hot, 

moderately used for warm, and least used for cold). 

 

6. CONCLUSIONS 
 

In this paper, we looked at the main challenges of the three fundamental components of BI, Data 

Acquisition, Data Storage, and Data Analytics. Our analysis highlighted agility, the next 

generation of data, real-time data, situation awareness, and self-service as the drivers for the need 
for updated guidelines. We listed the compilation of design and implementation guidelines for 

ETL, DW, and OLAP. We also described the assessment methodology. The new design, 

implementation, and assessment guidelines of DW, ETL, and OLAP would help decision-makers 
and BI IT practitioners in proactively avoiding the “known” pitfalls. 
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