Nothing Special   »   [go: up one dir, main page]

Weighted graphs: Eigenvalues and chromatic number

Charles Delorme

Abstract


We revisit Hoffman relation involving chromatic number $\chi$ and eigenvalues. We construct some graphs and weighted graphs such that the largest and smallest eigenvalues $\lambda$ dan $\mu$ satisfy $\lambda=(1-\chi)\mu.$ We study in particular the eigenvalues of the integer simplex $T_m^2,$ a 3-chromatic graph on $\binom {m+2}{2}$ vertices.


Keywords


graph spectra; chromatic number

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2016.4.1.2

Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.<div class="statcounter"><a title="web analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/11284516/0/7b1b10eb/1/" alt="web analytics"></a></div>

View EJGTA Stats