
Symmetry Breaking via
LexLeader Feasibility Checkers

Justin Yip and Pascal Van Hentenryck

Brown University, Box 1910
Providence, RI 02912, USA

Abstract

This paper considers matrix models, a class of
CSPs which generally exhibit significant symme-
tries. It proposed the idea of LexLeader feasibil-
ity checkers that verify, during search, whether the
current partial assignment can be extended into a
canonical solution. The feasibility checkers are
based on a novel result by [Katsirelos et al., 2010]
on how to check efficiently whether a solution is
canonical. The paper generalizes this result to par-
tial assignments, various variable orderings, and
value symmetries. Empirical results on 5 standard
benchmarks shows that feasibility checkers may
bring significant performance gains, when jointly
used with DOUBLELEX or SNAKELEX.

1 Introduction

Matrix models are a class of Constraint Satisfaction Prob-
lems that often exhibit significant symmetries and effective
symmetry-breaking techniques are often critical in solving
them in reasonable time. The LEXLEADER method is a com-
mon and elegant symmetry-breaking approach: it consists in
posting a lex-ordering constraint for each symmetry to ensure
that all non-canonical solutions are removed. Unfortunately,
even for simple symmetry classes, the LEXLEADER method
may generate an exponential number of constraints. A tradi-
tional way to overcome this limitation is to use only a subset
of the symmetry-breaking constraints, which is the approach
adopted in the DOUBLELEX and SNAKELEX methods for
matrix models. This paper takes an orthogonal and comple-
mentary approach: instead of enumerating all the symmetry-
breaking constraints for a symmetry class, it introduces the
idea of a LexLeader feasibility checker that succeeds if a
partial assignment can be extented into a canonical solution
and fails otherwise. The implementation of the feasibility
checker exploits a very interesting result from [Katsirelos et
al., 2010]: there exists an O(n!nm logm) algorithm to de-
cide whether a solution is canonical in a n×m matrix model
with row and column interchangeability. The paper shows
how to use this algorithm for building LexLeader feasibility
checkers. Moreover, the paper shows how LexLeader feasi-
bility checkers can accommodate value symmetries and var-
ious variable orderings. The experimental results on 5 stan-

dard benchmarks show that LexLeader feasibility checkers
may produce huge performance gains and are very robust.

This paper is organized as follows. Section 2 describes
the background and notations used in this paper. Section 3
introduces the novel idea of LexLeader Feasibility Checkers.
Sections 4–6 present several extensions and improvements to
the core idea. Section 7 describes the empirical results and
Section 8 concludes the paper.

2 Background

A Constraint Satisfaction Problem (CSP) consists of a set of
variables taking their values in a domain and a set of con-
straints. The problem is to find an assignment of values to
variables satisfying all constraints. This paper focuses on ma-
trix models [Flener et al., 2002] with n rows and m columns
and variables are usually subscripted with row and column
indices Xi,j . The domains are subsets of {1, ..., v}. A con-
straint specifies the allowed combinations of values for a sub-
set of variables. An assignment is a function that maps all
variables to values α(Xi,j) = ai,j and a partial assignment is
a partial function which maps a subset of variables to values.
An assignment extends a partial assignment if they agree on
the values of variables in the partial assignment.

A symmetry is a permutation of variables or values under
which solutions are preserved. A permutation σ is denoted
by, say, (23154), meaning σ(1) = 2, σ(2) = 3, and so on.
This paper mostly focuses on the common symmetry types in
matrix models [Xi,j ]: a row symmetry σr is a row permuta-
tion [Xσr(i),j ], a column symmetry σc is a column permuta-
tion [Xi,σc(j)], and a value symmetry σc is a value permuta-
tion [σv(Xi,j)]. Of course, these various symmetries can be
applied together, e.g., [σv(Xσr(i),σc(j))], making symmetry
breaking particularly challenging.

2.1 The LexLeader Method

The LexLeader method is a very common approach for
breaking symmetries [Crawford et al., 1996]: it eliminates
symmetrically-equivalent solutions by keeping only a prede-
fined canonical solution α. The canonical solution is usually
the lexicographically smallest assignment for a predefined
variable ordering. Hence, to eliminate a variable symmetry
σ, it suffices to post the following constraint:

[X1, ..., Xn] ≤lex [Xσ(1), ..., Xσ(n)].

687

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



Example 1. Consider a CSP with two variables X1, X2 ∈
{0, 1} and a constraint X1 �= X2. There are two so-
lutions: α1(X1) = 0, α1(X2) = 1 and α2(X1) =
1, α2(X2) = 0. There is a variable symmetry σ = (21).
Hence, the LexLeader method posts the lex-ordering con-
straint [X1, X2] ≤lex [X2, X1]. The solution α2 violates the
ordering constraint and is therefore removed.
Similarly, to eliminate value symmetry σ, it suffices to post

[X1, ..., Xn] ≤lex [σ(X1), ..., σ(Xn)].

2.2 The LexLeader Method in Matrix Models

Many matrix models exhibit both row and column in-
terchangeability, a property called full-interchangeability.
To eliminate symmetries in a fully-interchangeable matrix
model with n rows and m columns, the LexLeader method
may define a row-wise variable ordering row([Xij ]) ≡
[X1,1, . . . , X1,m, X2,1, . . . , X2,m, . . . , Xn,m] and post the
lex-ordering constraint

row([Xi,j ]) ≤lex row([Xσr(i),σc(j)])

for each row symmetry σr and column symmetry σc. There
are respectively n! and m! different row and column permuta-
tions. Hence breaking all symmetries this way is forbiddingly
expensive since there are n!m! such lex-ordering constraints.
In fact, breaking symmetries in fully-interchangeable matrix
models is particularly challenging, since deciding whether a
solution to such a model is canonical is already NP-complete
[Bessière et al., 2004].

2.3 The DOUBLELEX Method

The DOUBLELEX method is a popular method for breaking
symmetries in fully-interchangeable matrix models [Flener et
al., 2002].
Specification 1. The DOUBLELEX method takes a matrix
model and enforces lex-ordering among pairs of rows and
columns. ∧

1≤i<i′≤n

[Xi,1, ..., Xi,m] ≤lex [Xi′,1, ..., Xi′,m]

∧
∧

1≤j<j′≤m

[X1,j , ..., Xn,j ] ≤lex [X1,j′ , ..., Xn,j′ ].

The DOUBLELEX method does not break all symmetries.
Example 2. Consider a 2 × 3 fully-interchangeable matrix
model and the following two assignments which satisfy the
DOUBLELEX constraints:

112 122

221 211

They are symmetrical under σr = (21) and σc = (321).
In addition, complete filtering of DOUBLELEX constraints is
computationally difficult.
Theorem 1 ([Katsirelos et al., 2010]). Enforcing domain
consistency on the DOUBLELEX constraints is NP-hard.
As a result, in practice, as well as in the evaluation section
of this paper, the DOUBLELEX constraints are posted as a set
of lex-ordering constraints among pairs of rows and columns
independently.

2.4 The ROWWISELEXLEADER Method

[Katsirelos et al., 2010] introduced an interesting method for
checking if an assignment is a canonical solution to a fully-
interchangeable matrix model. The ROWWISELEXLEADER
method determines whether there exists a symmetrical solu-
tion which is smaller than a given assignment. If such solu-
tion exists, by transitivity, the current assignment cannot be
canonical. Let Sk be the set of all permutations of {1, ..., k}.
Specification 2. The ROWWISELEXLEADER method takes
an assignment α on a matrix model and returns

∃σr ∈ Sr, σc ∈ Sc :

row([α(Xσr(i),σc(j))]) <lex row([α(Xi,j)]).

The method is based on the observation that, if there is only
one type of symmetry, the above test reduces to sorting. As
a result, the ROWWISELEXLEADER method first enumerates
all row symmetries and, for each of them, sorts the matrix and
compares the resulting and original assignments.
Example 3. Consider a 2 × 3 fully-interchangeable matrix
model and the assignment (below on the left)

122 211

211 122

Applying the row symmetry σr = (21) produces the assign-
ment (above on the right). Now it remains to check if there
exists a smaller assignment under column interchangeability.
Sorting the columns produces the assignment

112

221

which is lexicographically smaller than the original assign-
ment. The original assignment is not canonical.
Theorem 2 ([Katsirelos et al., 2010]). For a n × m fully-
interchangeable matrix model, the ROWWISELEXLEADER
method runs in O(n!nm logm) time.
[Katsirelos et al., 2010] also showed that the DOUBLELEX
method may leave n! symmetries on some 2n × 2n matrix
models. Moreover, by applying Theorem 2 at the leaves of the
search tree, they showed empirically that DOUBLELEX may
leave a large number of symmetries in some benchmarks.

3 LexLeader Feasibility Checkers

The key idea behind this paper is to turn Theorem 2 into a
practical tool for removing symmetries during search. We
first generalize Theorem 2 to partial assignments. If a partial
assignment α of the first n′ rows is such that another par-
tial assignment of the same rows is lexicographically smaller
than α, then any solution extending α is not canonical and the
subtree corresponding to α may be pruned. Consider Exam-
ple 3 and assume that the matrix has more than two rows. The
partial assignment [(122),(211)] has exactly two rows filled.
Since it is not canonical for the submatrix, any solution ex-
tending it is not canonical either and the algorithm can back-
track at this stage without trying to extend the assignment.

A LexLeader feasibility checker can directly use the im-
plementation idea behind Theorem 2. Moreover, since the

688



bottleneck in Theorem 2 is the n! enumeration of the row
symmetries, checking partial assignments early in the search,
i.e., partial assignments with a small n′, will be more efficient
and may potentially prune large portions of the search space.
Specification 3 (RowCol Feasibility Checker). ROW-
COLFC takes a partial assignment α of the first n′ rows of
a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sc :

rown′([α(Xσr(i),σc(j))]) <lex rown′([α(Xi,j)]).

where rown′ only linearize the first n′ rows. Note that σr

only considers the interchangeability among the first n′ rows.
Theorem 3. ROWCOLFC takes O(n′!n′m logm) time.
Theorem 4. ROWCOLFC removes all but the canonical so-
lution in a n by m fully-interchangeable matrix model.

Proof. We first prove soundness: only non-canonical solu-
tions are removed. Then we prove completeness: all non-
canonical solutions are removed.

Soundness: The lex-ordering relation is dominated by the
prefix. Consider a partial assignment α of the first n′ rows
and a solution αc extending it. If α has a symmetric partial
assignment that is strictly smaller lexicographically than un-
der any symmetries σr ∈ Sn′ and σc ∈ Sc, then αc also has
a symmetric assignment smaller than it. Formally,

∀σr ∈ Sn′ , σc ∈ Sc :

rown′([α(Xσr(i),σc(j))]) <lex rown′([α(Xi,j)])

⇒ row([αc(Xσr(i),σc(j))]) <lex row([αc(Xi,j)]).

ROWCOLFC returns true when α cannot be extended into a
canonical solution and no canonical solutions are removed.

Completeness: When the partial assignment is complete,
ROWCOLFC is equivalent to ROWWISELEXLEADER. �̈

For those cases in which the domain size v is much smaller
than the number of rows and columns. In these cases, the
running time of the algorithm can be improved with a bucket
sort, reducing the complexity by a factor of logm.
Theorem 5. ROWCOLFC takes O(n′!n′ max(m, v)) time.

4 Variable Orderings

Canonical solutions depend on a pre-defined variable order-
ing. This section shows how to generalize LexLeader fea-
sibility checkers to different variable orderings. In the liter-
ature, most models apply either a row-wise or column-wise
canonical ordering. Recently, [Grayland et al., 2009] intro-
duced a very interesting variable ordering called SNAKELEX.
This section restricts attention to row-wise SNAKELEX order-
ing since the column-wise counterpart is essentially equiva-
lent. The SNAKELEX ordering orders variables in a snake
fashion. It takes variables from left to right in the first row,
from right to left in the second, from left to right again in
the third, and all the way until the last row. Empirical re-
sults in [Grayland et al., 2009; Katsirelos et al., 2010] demon-
strated that SNAKELEX sometimes breaks more symmetries.
A LexLeader feasibility checker can be naturally defined for
the SNAKELEX ordering.

Definition 1 (Snake Linearization). snake([Xij ]) ≡
[X1,1, ..., X1,c, X2,c, X2,c−1, ..., X2,1, X3,1, ...]

Specification 4 (RowCol-Snake Feasibility Checker).
ROWCOL SNAKEFC takes a partial assignment α of the first
n′ rows of a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sm :

snaken′([α(Xσr(i),σc(j))]) <lex snaken′([α(Xi,j ]).

It is not difficult to see that ROWCOL SNAKEFC has the
same time complexity as ROWCOLFC. For instance, with the
conventions used in this paper, it suffices to negate the even
rows and to apply ROWCOLFC.

5 Value Symmetries

This section generalizes LexLeader feasibility checkers to
value symmetries, starting with value interchangeability.
Definition 2 (ValRowCol Feasibility Check). VALROW-
COLFC takes a partial assignment α of the first n′ rows of
a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sc, σv ∈ Sv :

row([α(σv(Xσr(i),σc(j)))]) <lex row([α(Xi,j)]).

The implementation for VALROWCOLFC adds an extra layer
of value permutation to the top of ROWCOLFC.
Theorem 6. VALROWCOLFC takes O(v!n′!n′ max(m, v))
time.
Example 4. Consider the partial assignment in a matrix
model with row, column, and value interchangeability,

112233

121233

To check whether it can be extended into the canonical solu-
tion, we enumerate all value permutations and apply ROW-
COLFC. For instance, σv = (231) produces the submatrix

223311

232311

ROWCOLFC returns true and the partial assignment cannot
be extended into a canonical solution.
This approach is not limited to value interchangeability only;
the same principle can be applied to any kind of value sym-
metries. The key is simply to enumerate all but one type of
symmetry and to exploit the semantics of the remaining one.
We illustrate the approach by presenting a feasibility checker
for a specific value symmetry class.
Definition 3 (Error Correcting Code, Lee Distance (EC-
CLD)). The problem is to find d codewords of length-q that
drawn from 4 symbols (1, 2, 3, 4) such that the Lee Distance
between every-pair of codeword is exactly c. The Lee Dis-
tance between two symbols a, b is min(|a− b|, 4− |a− b|).
The ECCLD problem can be modelled as a matrix model. It
has row and column symmetries and an interesting class of
value symmetries. Indeed, the values are not interchangeable
but the symmetry class Σlee contains 8 symmetries:
{(1234), (1432), (2143), (2341), (3214), (3412), (4123), (4321)}
The value symmetries apply to each column independently,

since the only constraint is the Lee distance between corre-
sponding columns in each row.

689



Example 5. The two ECCLD solutions
1122 1111

2434 2223

are symmetric. The first column is obtained by identity, the
second by (1432), the third by (4123), and the last by (2143).
A LexLeader feasibility checker for the ECCLD problem can
be obtained by enumerating all row and column symmetries
and leaving the value symmetry to the sorting step. This is
more efficient than enumerating all value symmetries since
there are 8m of them.
Specification 5 (RowColLee Feasibility Checker). ROW-
COLLEEFC takes a partial assignment α of the first n′ rows
of a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sc, σv ∈ Σlee :

rown′([α(σv(Xσr(i),σc(j)))]) <lex rown′([α(Xi,j)]).

Theorem 7. ROWCOLLEEFC runs in O(n!m!nm) time.

Proof. First, we enumerate all possible row and column sym-
metries: there are n!m! of them. The resulting matrices
only contain value symmetries and the task is to determine
if there exists a value symmetry for each column that would
produce a new assignment lexicographically smaller than α.
Let Yij = Xσr(i),σc(j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m be
such a matrix. For each column j, we introduce a variable
Zj ∈ {0, ..., 7} to denote its possible value symmetries in
Σlee. We perform a row-wise scan of the matrix and, for
every Yij , we check if there exists a value symmetry in Zj

yielding a smaller value than Xij . If such a symmetry is
found, α is not canonical solution. Otherwise, we remove
all value symmetries in Zj that would yield a larger value
than Xij (the remaining values in Zj preserves the values of
Y1j , . . . , Yij). The whole matrix needs to be scanned only
once and the check in each cell takes O(1) time (we only
need to index each symmetry pattern with the value of Yij).
The total runtime is therefore O(n!m!nm). �̈

6 Practical Considerations

The earlier section illustrated a key aspect of the approach:
one can choose which symmetries to enumerate to obtain the
best performance. For instance, on some problems, it may
be more appropriate to enumerate the value symmetries first,
while it may be unpractical to do so in others.

In practice, it may not be cost-effective to break all sym-
metries systematically. For instance, one can restrict the fea-
sibility checker to the first k rows of the model, reducing the
running time to O(k!kmax(m, v)). On some problems, this
may significantly improve the performance of the approach.
Once again, it is useful to note that the earlier LexLeader fea-
sibility checks cost less and may prune large portions of the
search tree. This is a nice property of the approach.

Finally, it is always possible to use several feasibility
checkers simultaneously capturing different combinations of
symmetries, provided that they use the same variable order-
ing. For instance, in a fully-interchangeable matrix model
with value symmetries, one may use one checker for row and
value symmetries, another for column and value symmetries,
and a third for row and column symmetries.

7 Experimental Evaluation

This section evaluates the performance of LexLeader feasi-
bility checkers empirically. The primary goal is to assess the
effectiveness of the approach, i.e., whether the reduction in
search space outweighs the time spent in the feasibility check-
ers. Five benchmark problems were used, most of which can
be found in the CSPLib. They are concerned with finding
either all solutions or the optimal solution. All models and
feasibility checkers are implemented in the COMET system.
Our experiments are run on a Core2Duo 2.4GHz with 4GB
of memory. The symbol · indicates a timeout of 1800 sec-
onds. Unless otherwise specified, variables are labeled in the
symmetry-breaking order and values are tried in increasing
order.

Equidistant Frequency Permutation Array problem
(EFPA) The task is to find a set of v codewords drawn from
q symbols and each symbol appears for exactly λ times such
that the Hamming distance between every pair of codeword
is exactly d. The non-boolean model in [Huczynska et al.,
2009] is used. The model is a v× qλ matrix of variables with
domain {1, ..., d}. There are three main classes of symme-
try: row interchangeability, column interchangeability, and
value interchangeability. In [Katsirelos et al., 2010], it was
shown that completely breaking row and column interchange-
ability significantly reduces the number of solutions found.
Our evaluation confirms this and pushes it further: completely
breaking row, column, and value interchangeability achieves
the best runtime performance.

The experiments compare several approaches. DOU-
BLELEX and SNAKELEX post static symmetry-breaking
constraints, while ROWCOL-ROWWISE, ROWCOL-SNAKE,
VALROWCOL-ROWWISE, and VALROWCOL-SNAKE add a
feasibility checker on the top of the static model. ROWCOL
only considers row and column symmetries: all row sym-
metries are first enumerated and columns are then sorted as
in Theorem 3. VALROWCOL considers all symmetries: all
value and row symmetries are enumerated and the columns
are sorted (as in Theorem 6). The sorting uses a specific vari-
able ordering (either ROWWISE or SNAKE), producing four
feasibility checkers.

Table 1 presents the results. The feasibility checkers VAL-
ROWCOL break all symmetries, find the fewest solutions and
are the fastest. The improvements are more than 3 orders
of magnitude when compared with the static methods and
many times faster than the feasibility checkers breaking only
row and column symmetries. The difference between the two
variable orderings ROWWISE and SNAKE is small compared
to the overall improvement, with a slight avantage to SNAKE.
Note that both orderings achieve the same number of non-
symmetric solutions since the choice of variable ordering has
no effect on the number of solutions when the symmetry-
breaking method is complete.

Balanced Incomplete Block Design (BIBD) The experi-
ments use the boolean fully-interchangeable matrix model
from [Flener et al., 2002] and compare static methods and
the LexLeader feasibility checkers. We label large value

690



first. In some large instances, the number of rows becomes
very large (v = 10 is a matrix with 10 rows and requires
10! = 3, 628, 800 permutations). Hence, the experiments also
evaluate the performance of the feasibility checker in which
only the first k rows in the matrix are enumerated, for some
specified value of k. Table 2 presents the result. The com-
plete feasibility checkers return the fewest solutions and are
generally faster than the static method. Checkers with a row
limitation achieves the most robust results: they are up to 8
times faster on large instances (ROWWISE on (22,7,2)) and
only slightly slower on others.

Cover Array problem (CA) The experiments use the inte-
grated model in [Hnich et al., 2006] which has row, column,
and value symmetries. The traditional comparisons are per-
formed. However, since in earlier benchmarks, the impact of
the variable ordering was negligible among complete check-
ers, only the ROWWISE ordering was considered for this, and
subsequent, problems. Table 3 gives the results and the com-
plete method is generally the fastest.

Error Correcting Code, Lee Distance This is CSPLib
036, an optimization problem whose the goal is to find the
maximum number m of codeword of length n drawn from
4 symbols such that the Lee distance between every pair of
codewords is exactly c. The decision problem is to find m
codewords satisfying the constraints. The search starts with
m = 1 and increases m by 1 each time. Optimality is proven
when no solution is found. The model has both row and col-
umn symmetries and value symmetries discussed earlier in
the paper. It is forbiddingly expensive to enumerate all pos-
sible value symmetries for each column. Instead the experi-
ments use a number of feasibility checkers dealing with dif-
ferent combinations of symmetries. The results show that this
approach dramatically reduces the search space.

More precisely, LEEROWCOL enumerates all the value
symmetries globally (like in value interchangeability), mean-
ing that it ignores that each column can have its own sym-
metry. ROWLEE implements the algorithm from Theorem
7, except that the column symmetries are not enumerated.
Both checkers have row limitation as well. Table 4 de-
picts the results. Due to its huge symmetry size, static
symmetry-breaking approaches only solve a few small in-
stances. ROWLEE produces significant improvements in per-
formance: On instance (5, 6), it reduces the time from 600
seconds to a fraction of a second. Overall, the combination of
LEEROWCOL and ROWLEE produces the best results as the
rightmost column indicates. The performance improvements
on this benchmark are spectacular.

Error Correcting Code, Hamming Distance This is a
common benchmark problem for set variables and the ex-
periments use the model from [Sadler and Gervet, 2008] and
length-lex constraints from [Yip and Van Hentenryck, 2009]
enhanced with a few redundant constraints. The model has
both row and column symmetry and the experiments com-
pare the static method, the feasibiity checkers, and the results

in [Gange et al., 2010]. Table 5 gives the results, indicating
that the feasibility checker achieves the best overall results.

8 Conclusion

This paper proposed the idea of LexLeader feasibility check-
ers that verify, during search, whether the current partial as-
signment can be extended into a canonical solution. The
feasibility checkers are based on a result by [Katsirelos et
al., 2010] on how to check efficiently whether a solution is
canonical. This paper showed how to generalize this result
to partial assignments, various variable orderings, and value
symmetries. Several checkers combining different types of
symmetries can be used simultaneously, instead of tackling
all symmetries together which may be prohibitive. Empiri-
cal results on 5 standard benchmarks showed that feasibility
checkers may bring significant, sometimes spectacular, per-
formance gains.

References

[Bessière et al., 2004] C. Bessière, E. Hebrard, B. Hnich,
and T. Walsh. The complexity of global constraints. In
AAAI, 2004.

[Crawford et al., 1996] J. Crawford, M. Ginsberg, E. Luks,
and A. Roy. Symmetry-breaking predicates for search
problems. In KR, 1996.

[Flener et al., 2002] P. Flener, A. Frisch, B. Hnich, Z. Kizil-
tan, I. Miguel, J. Pearson, and T. Walsh. Breaking row and
column symmetries in matrix models. In CP, 2002.

[Gange et al., 2010] G. Gange, P.J. Stuckey, and V. Lagoon.
Fast set bounds propagation using a bdd-sat hybrid. In
JAIR, 2010.

[Grayland et al., 2009] A. Grayland, I. Miguel, and C.M.
Roney-Dougal. Snake lex: An alternative to double lex.
In CP, 2009.

[Hnich et al., 2006] B. Hnich, S. Prestwich, E. Selensky, and
B. Smith. Constraint models for the covering test problem.
Constraints, 11(2-3), 2006.

[Huczynska et al., 2009] S. Huczynska, P. McKay, I.
Miguel, and P. Nightingale. Modelling equidistant fre-
quency permutation arrays: An application of constraints
to mathematics. In CP, 2009.

[Katsirelos et al., 2010] G. Katsirelos, N. Narodytska, and T.
Walsh. On the complexity and completeness of static con-
straints for breaking row and column symmetry. In CP,
2010.

[Yip and Van Hentenryck, 2009] J. Yip and P. Van Henten-
ryck. Evaluation of Length-Lex Set Variables. In CP,
2009.

[Sadler and Gervet, 2008] A. Sadler and C. Gervet. Enhanc-
ing set constraint solvers with lexicographic bounds. J.
Heuristics, 14(1), 2008.

691



DOUBLELEX SNAKELEX ROWCOL-ROWWISE ROWCOL-SNAKE VALROWCOL-ROWWISE VALROWCOL-SNAKE

(q, λ, d, v) #s Time #s Time #s Time #s Time #s Time #s Time
(3, 3, 2, 3) 6 0.01 6 0.01 6 0.01 6 0.01 1 0.01 1 0.01

(4, 3, 3, 3) 16 0.07 16 0.06 8 0.05 8 0.05 2 0.03 2 0.03

(4, 4, 2, 3) 12 0.02 12 0.02 12 0.03 12 0.03 1 0.02 1 0.02

(3, 4, 6, 4) 11215 27.49 10760 24.05 1427 13.38 1427 14.79 263 3.79 263 3.93
(4, 3, 5, 4) 61267 329.97 58582 221.43 8600 117.3 8600 96.88 371 8.62 371 8.11

(4, 4, 5, 4) 72309 682.05 66977 422.14 9696 252.15 9696 187.46 419 15.83 419 15.68

(5, 3, 3, 4) 21 1.56 20 0.76 5 1.04 5 0.55 1 0.19 1 0.15

(3, 3, 4, 5) 71 0.69 71 0.55 18 0.39 14 0.38 4 0.15 4 0.15

(3, 4, 6, 5) 77535 662.7 71186 512.21 4978 130.33 4876 128.22 864 29.88 864 27.26

(4, 3, 4, 5) 2708 77.52 2754 45.06 441 27.42 447 20.08 27 2.98 27 2.45

(4, 4, 2, 5) 12 0.07 14 0.05 12 0.24 12 0.24 1 0.06 1 0.06

(4, 4, 4, 5) 4752 137.03 5354 83.34 717 54.55 822 42.43 45 5.29 45 4.85

(4, 6, 4, 5) 7662 253.85 21782 181.09 819 96.57 3017 117.8 51 8.98 51 8.27
(5, 3, 4, 5) 24619 1731.65 28214 818.31 3067 573.38 3523 337.19 43 15.59 43 11.18

(6, 3, 4, 5) · · · · · · · · 58 69.91 58 45.36

Table 1: Equidistant Frequency Permutation Array problem

DOUBLELEX SNAKELEX ROWCOL-ROWWISE ROWCOL-SNAKE ROWCOL-ROWWISE (k=8) ROWCOL-SNAKE (k=8)
(v, k, λ) #s Time #s Time #s Time #s Time #s Time #s Time

(5, 2, 7) 1 0.01 1 0.03 1 0.05 1 0.1 1 0.05 1 0.1
(5, 3, 6) 1 0.01 1 0.01 1 0.02 1 0.02 1 0.02 1 0.02
(6, 3, 4) 21 0.02 25 0.03 4 0.09 4 0.1 4 0.1 4 0.14
(6, 3, 6) 134 0.14 146 0.22 6 0.18 6 0.25 6 0.21 6 0.27
(7, 3, 5) 33304 17.95 85242 51.78 109 4.49 109 8.05 109 5.03 109 8.98
(7, 3, 6) 250878 177.29 566230 452.1 418 19.08 418 38.45 418 21.54 418 40.88
(7, 3, 7) 1460332 1315.66 · · 1508 83.29 1508 182.92 1508 92.95 1508 193.42
(8, 4, 6) 2058523 1341.93 · · 2310 73.35 2310 150.29 2310 82 2310 153.23

(10, 3, 2) 724662 281.83 · · 960 74.83 960 341.98 12563 43.84 14420 203.8
(10, 5, 4) 8031 18.69 13069 78.33 21 2.14 21 7.61 68 1.91 89 8.0
(22, 7, 2) 0 11.12 0 85.1 0 23.21 0 14.23 0 2.86 0 14.0

Table 2: Balanced Incomplete Block Design Problem

DOUBLELEX ROWCOL-ROWWISE VALROWCOL-ROWWISE

(t, k, g, b) #s Time #s Time #s Time
(2, 3, 2, 4) 2 0.01 2 0.01 1 0.01

(2, 3, 2, 5) 15 0.01 8 0.01 4 0.01

(2, 3, 3, 9) 12 0.01 6 0.01 3 0.01

(2, 3, 3, 10) 368 0.14 104 0.09 21 0.05

(2, 3, 3, 11) 6824 2.33 1499 1.26 271 0.46

(2, 3, 4, 16) 576 0.33 150 0.25 15 0.32

(2, 3, 4, 17) 43368 23.52 8236 11.93 391 3.13

(2, 3, 5, 25) 161280 134.91 27280 77.71 283 92.91
(2, 4, 2, 5) 10 0.01 5 0.01 3 0.01

(2, 4, 2, 7) 2285 1.06 333 0.32 175 0.19

(2, 4, 3, 9) 36 0.03 5 0.02 2 0.02

Table 3: Cover Array Problem

DOUBLELEX LEEROWCOL (k=8) ROWLEE (k=5) LEEROWCOL (k=8) + ROWLEE (k=5)
(n, c) Opt Time Fails Time Fails Time Fails Time Fails
(4, 2) 8 1.44 21327 0.37 2882 0.11 253 0.12 240

(4, 4) 8 101.17 1834887 9.38 93085 1.29 4280 0.88 2761

(4, 6) 2 0.05 1211 0.03 337 0.01 77 0.01 77

(5, 2) 10 13.98 159808 1.75 11826 0.27 516 0.26 435

(5, 4) 8 · · 425.09 4615063 13.87 63425 6.05 27492

(5, 6) 6 649.75 13466477 37.58 469869 0.4 2597 0.32 1861

(5, 8) 2 0.08 2152 0.04 509 0.01 115 0.02 115

(6, 2) 12 300.86 3114351 8.49 47859 0.69 1133 0.53 752

(6, 4) 8 · · · · 39.39 246749 12.79 79602

(6, 8) 4 92.8 2187585 8.82 129252 0.05 584 0.07 553

(7, 2) 14 · · 35.73 166890 1.85 2842 1.09 1343

(7, 4) 8 · · · · 73.78 522444 20.17 132809

(8, 2) 16 · · 156.45 599460 5.5 8011 2.64 2701

(8, 4) 8 · · · · 154.18 972759 30.55 183120

Table 4: Error Correcting Code, Lee Distance

BDD-SAT LENGTH-LEX + redundant ROWCOL (k=7) + redundant
(l, d, w) Opt Time Fails Time Fails Time Fails
(8, 4, 4) 14 0.03 61 0.03 0 0.05 0

(9, 4, 3) 12 0.06 300 0.03 1 0.05 1

(9, 4, 6) 12 0.06 256 0.05 3 0.08 3

(10, 6, 5) 6 0.03 145 0.03 14 0.04 14

(9, 4, 4) 18 1.04 4466 0.11 23 26

(10, 4, 3) 13 2.37 16755 0.08 42 0.11 42

(10, 4, 4) 30 14.66 34503 0.19 31 0.27 31

(10, 4, 5) 36 104.39 184051 4.24 6425 1.34 1127

(10, 4, 6) 30 48.96 131379 5.52 8067 1.48 1163

(10, 4, 7) 13 1.96 13533 0.11 25 0.17 15

Table 5: Error Correcting Code, Hamming Distance

692




