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Abstract

We show that different semantics of ability in ATL
give rise to different validity sets. As a conse-
quence, different notions of ability induce differ-
ent strategic logics and different general properties
of games. Moreover, the study can be seen as the
first systematic step towards satisfiability-checking
algorithms for ATL with imperfect information.

1

Alternating-time temporal logic (ATL) [3] is a temporal logic
that incorporates some basic game theoretical notions. Se-
mantic variants of ATL are usually derived from different as-
sumptions about agents’ capabilities. Can the agents “see”
the current state of the system, or only a part of it? Can they
memorize the whole history of observations in the game? Is
it enough that they have a way of enforcing the required tem-
poral property “objectively”, or should they be able to come
up with the right strategy on their own? Different answers to
these questions induce different semantics of strategic ability,
and they clearly give rise to different analyses of a given prob-
lem domain. However, it is not entirely clear to what extent
they give rise to different logics. One natural question that
arises in this respect is whether these semantic variants gen-
erate different sets of valid (and, dually, satisfiable) sentences.
In this paper, we settle the issue and show that most “classi-
cal” semantic variants of ATL are indeed different, and we
characterize the relationship between their sets of validities.

The question is important for several reasons. First, by
comparing validity sets we compare the respective logics in
the traditional sense. Moreover, validities of ATL capture
general properties of games under consideration: if, e.g., two
variants of ATL generate the same valid sentences then the
underlying notions of ability induce the same kind of games.
All the variants studied here are defined over the same class
of models that generalizes extensive games. The difference
between games “induced” by different semantics lies in avail-
able strategies and the winning conditions for them.

Finally, the satisfiability problem for ATL, though far less
studied than model checking, is not necessarily less impor-
tant. While model checking ATL can be seen as the analogue
of game solving, satisfiability corresponds naturally to mech-
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anism design. A systematic study on the abstract level is the
first step towards algorithms that solve the problem.

Ultimately, we show that what agents can achieve is more
sensitive to the strategic model of an agent (and a precise no-
tion of achievement) than it was generally realized. No less
importantly, our study reveals that some natural properties —
usually taken for granted when reasoning about action — may
cease to be universally true if we change the strategic set-
ting. Examples include fixpoint characterizations of tempo-
ral/strategic operators (that enable incremental synthesis and
iterative execution of strategies) and the duality between nec-
essary and obtainable outcomes in a game.

Related Work. ATL has been studied extensively; however,
most of the research was focused on the way such logics
can be used for specification and verification of multi-agent
systems. Semantic variants were defined that match vari-
ous interpretations of ability [7; 12; 9], and the complexity
of model checking was investigated and compared for dif-
ferent settings and different variants of the logic [12; 13;
8]. Axiomatization and satisfiability were investigated in [5;
15; 111, and expressivity issues were raised in [10]. Surpris-
ingly, relationships between the “classical” semantic variants
(as defined in [12]) have not yet been studied, though analo-
gous results exist for more sophisticated variations (cf. [1] for
irrevocable strategies and [2] for agents with bounded mem-
ory). In particular, formal properties of ATL variants for im-
perfect information were largely left untouched.

2 Reasoning about Strategic Abilities

ATL [3] generalizes the branching time logic CTL by re-
placing path quantifiers E, A with cooperation modalities
{(A). Informally, ((A)~ expresses that the group of agents
A has a collective strategy to enforce temporal property ~.
ATL formulae include temporal operators: “O ” (“in the next
state”), “0” (“always from now on”) and U (“until”). The
additional operator “$” (“now or sometime in the future”)
can be defined as &y = T U ~. Formally, the language of
ATL* is given by the grammar below, where A is a set of
agents, and p is an atomic proposition:

pu=plopleAe| (A,
V=@ | [vAv[ Oy |vUn.
The best known syntactic variant of alternating time tem-
poral logic is “ATL without star” (or “vanilla” ATL) in which



every occurrence of a cooperation modality is uniquely cou-
pled with a temporal operator. ATL™T sits between ATL*
and “vanilla” ATL: it allows cooperation modalities to be
followed by a Boolean combination of simple temporal sub-
formulae. We will use the acronym ATL to refer to “ATL
without star” when no confusion can arise.

2.1 Basic Semantics of ATL

In [3], the semantics of alternating-time temporal logic is
defined over a variant of transition systems where transi-
tions are labeled with combinations of actions, one per agent.
Formally, a concurrent game structure (CGS) is a tuple
M = (Agt, St,I1, 7, Act,d, o) which includes a nonempty
finite set of all agents Agt = {1,...,k}, a nonempty set
of states St, a set of atomic propositions II and their valu-
ation 7 : II — 257, and a nonempty finite set of (atomic) ac-
tions Act. Function d : Agt x St — 24¢ defines nonempty
sets of actions available to agents at each state, and o is a
(deterministic) transition function that assigns the outcome
state ¢ = o(q, a1, ..., ay) to state ¢ and a tuple of actions
a; € d(i, ) that can be executed by Agt in q.

A path A = qpq19= - . . is an infinite sequence of states such
that there is a transition between each ¢;, g; 1. We use \[i] to
denote the ith position on path A (starting from ¢« = 0). The
set of paths starting in ¢ is denoted by A,/ (gq). Moreover, we
define Aﬁ"(q) as the set of all finite prefixes of A (q).

In the standard version of ATL [3], strategies are repre-
sented by functions s, : St* — Act. A collective strategy
for a group of agents A = {ay,...,a,} is simply a tuple of
individual strategies s4 = (Say,---8q,). The “outcome”
function out(q, s 4 ) returns the set of all paths that may occur
when agents A execute strategy s 4 from state ¢ onward. Now,
the semantics of ATL* and its sublanguages can be defined
by the standard clauses for Boolean and temporal operators,
plus the following clause for {{A)) (cf. [3] for details):

M, q = ((A))y iff there is a strategy s for agents A such
that for each path A € out(q, sa), we have M, A |= .

Note that the semantics does not address the issue of coor-
dination [4]: if there exist several successful strategies for A,
the agents in A will somehow choose between them.

We recall that the following fixpoint properties are valid in
the original semantics of ATL [3]:

(ANBe < oA {A)O (A)Dy
(ADprUps = w2V o1 A(A)YO (ADp1U po.
Moreover, the path quantifiers A, E of CTL can be ex-
pressed in ATL with (@), ({Agt)) respectively. As a conse-

quence, the CTL duality axioms can be rewritten in ATL,
and become validities in the basic semantics:

~(Agt)Op & (0)D-,
—(DHCe  «  (Agt)O—ep.

2.2 Between Uncertainty and Recall

A number of semantic variations have been proposed for
ATL, cf. e.g. [7; 12; 9; 1; 2]. In this paper, we study the
”canonical” variants as proposed in [12]. There, a taxonomy
of four strategy types was introduced and labeled as follows: 1
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(resp. i) stands for perfect (resp. imperfect) information, and
R (resp. r) refers to perfect recall (resp. no recall). The se-
mantics of ATL can be parameterized with the strategy type
— yielding four different semantic variants of the logic, la-
beled accordingly (ATLg, ATLy, ATL;r, and ATL;). In
this paper, we extend the taxonomy with a distinction be-
tween objective and subjective abilities under imperfect in-
formation, denoted by i, and ig; the distinction can be traced
back to [7; 9].

Models, imperfect information concurrent game structures
(iICGS) [14; 12], are CGS’s augmented with a family of
indistinguishability relations ~,C St x St, one per agent
a € Agt. The relations describe agents’ uncertainty: ¢ ~, ¢’
means that agent a cannot distinguish between states g and
q' of the system. Each ~, is assumed to be an equivalence
relation. It is also required that agents have the same choices
in indistinguishable states: if ¢ ~, ¢’ then d(a, q) = d(a, q’).
Note that CGS’s can be seen as the subclass of iCGS’s
where all ~, are the minimal reflexive reflexive relations.

A history is a finite sequence of states. Two histories
h qgoq1---qn and B = ¢\q} ... ¢, are indistinguish-
able for agent a (h ~, W) iff n = n’ and ¢; ~, ¢ for
t =1,...,n. Additionally, for any equivalence relation R
over a set X we use [z]g to denote the equivalence class of
x. Moreover, we use the abbreviations ~4:= |J,c 4 ~q and
Uaeca ~a- Note that relations ~ 4 and ~ 4 implement
the “everybody knows” type of collective knowledge (i.e., q
and ¢ are indistinguishable for group A iff there is at least
one agent in A for whom ¢ and ¢’ look the same).

The following types of strategies are used in the respective
semantic variants:

Ir: sq : St — Act such that s,(q) € d(a, ¢q) for all ¢;
IR: s, : Stt — Act such that s,(qo - ..¢,) € d(a,q,)
for all qq, ..., qn;
ir (i.e., isr or i,r): like Ir, with the additional constraint
that ¢ ~, ¢’ implies s,(q) = sa(¢');
iR (i.e., igR or iyR): like IR, with the additional con-
straint that h =, h’ implies s,(h) = s,(h').
That is, strategy s, is a conditional plan that specifies a’s ac-
tion in each state of the system (for memoryless agents) or for
every possible history of the system evolution (for agents with
perfect recall). Moreover, imperfect information strategies
specify the same choices for indistinguishable states (resp.
histories). As before, collective xy-strategies s 4 are tuples of
individual xy-strategies s,, one per a € A.

The set of possible outcomes of a strategy is defined as:

out(q,sa) for x € {I,i,} and y €

"p=

o out®(q,s4)
{r,R};

o out™(q,54) = Uy, 0ut(q’,54) forz =isandy €
{r,R}.

We obtain the semantics for ATLyy by changing the clause

for ((A))7y from Section 2.1 in the following way:
M,q =zy (A)y iff there is an xy-strategy s4 such that

for each A € out™(q,s54), we have M, A =4, 7.

Note that the I and i, semantics of ATL look only at out-

come paths starting from the current global state of the sys-
tem. In other words, they formalize the properties which



agents can enforce objectively (but, in case of uncertainty
about the current state, they may be unaware of the fact). In
contrast, the i; semantics of ({A))~y refers to all outcome paths
starting from states that look the same as the current state for
coalition A. Hence, it formalizes the notion of A knowing
how to play in the sense that A can identify a single strategy
that succeeds from all the states they consider possible. We
follow [12] by taking the “everybody knows” interpretation of
collective uncertainty. More general settings were proposed
in [9]; we believe that the results in this paper carry over to
the other cases of “knowing how to play”, too.

We observe that the basic semantics of ATL from [3] cor-
responds exactly to ATLg. Moreover, in “vanilla” ATL both
semantics for perfect information coincide:

Proposition 1 ([3; 12]) For every iCGS M, state q, and
ATL formula ¢, we have that M, q =, ¢ iff M, q =, ©

3 Comparing Validities for Variants of ATL

In this section we present a formal comparison of the seman-
tic variants defined in Section 2. As stated in the introduction,
we compare the variants on the level of their validity sets (or,
equivalently, satisfiable sentences). In most cases, they turn
out to be different. Also, we can usually show that one variant
is a refinement of the other in the sense that its set of validities
strictly subsumes the validities induced by the other variant.

In what follows, we write Val(ATLg) to denote the set
of ATL validities under semantics sem. Likewise, we write
Sat(ATLgey ) for the set of ATL formulae satisfiable in sem.
The conceptual reading of Val(ATLgey1) C Val(ATLgem2)
can be as follows: for “game boards” given by iCGS’s, we
have that the “game rules” in semantics ATLgy, strictly re-
fine the rules in AT L.

3.1 Perfect vs. Imperfect Information

We begin by comparing perfect and imperfect information
scenarios. That is, in the first class (I), agents recognize
the current global state of the system by definition. In the
latter (i), uncertainty of agents about states constraints their
choices.

Comparing ATL;, vs. ATLy,

First, we observe that perfect information can be seen as a
special case of imperfect information.

Proposition 2 Val(ATL:,) C Val(ATLy) and Val(ATL;,,)
C Val(ATL,).

Proof. Since perfect information of agents can be explic-
itly represented in iCGS by fixing all relations ~, as the
minimal reflexive relations (¢ ~, ¢ iff ¢ = ¢'), we have
that ¢ € Sat(ATLy) implies ¢ € Sat(ATLi,) and ¢ €
Sat(ATL;_;). Thus, dually, Val(ATL;,) C Val(ATLy) and
Val(ATL; ;) C Val(ATLy). ]

Proposition 3 Val(ATLy)  Val(ATL;,,).

Proof. We show that by presenting a validity for ATL;, which
is not valid in ATL;_,. Consider the formula that captures

254

Figure 1: “Poor duck model” M; with one player (a) and
transitions labeled with a’s actions. Dotted lines depict the
indistinguishability relations.

the right-to-left direction in the fixpoint characterization of
{(aho:
@1 = (pV (@) O (a)Cp) = (a)Op

®; is Ir-valid (cf. Section 2). To see its invalidity in the
isr semantics, consider model M; from Figure 1.! Indeed,
for p = shot, we get M1,q0 =, pV (a)O (a)Op and
My, qo [~ (a@))<p, which formally concludes our proof. m

Proposition 4 Val(ATLy) € Val(ATL; ;).

Proof. Tt is sufficient to show that &; (p Vv
{apO {a)p<op) — (a)<p is invalid in the i r semantics.
Take model M in Figure 2 and p = shot. Now we have
that My, g =, p V (@))O (@) p because a has a uniform
strategy to achieve <p in gg (sq(q) = shooty, for every q)
and another uniform strategy in ¢; (s,,(q) = shootg for ev-
ery ¢). However, s, and s/, cannot be merged into a single
uniform strategy, and indeed Mo, g =, , {(a)Op. ]

-

=

Corollary 1 Val(ATL:,) C Val(ATLy) and Val(ATL; ,)
Val(ATLy).

Comparing ATL;r vs. ATL;g

First, we observe that for ATL; r vs. ATLr we can em-
ploy the same reasoning as for for ATL;_; vs. ATLy. Abil-
ities under perfect information can be still seen as a special
case of imperfect information abilities, and we can use the
same model M5 to invalidate the same formula ®; in ATL;_g.
Thus, analogously to Corollary 1 we get:

!The story behind Figure 1 is as follows. A man wants to shoot
down a yellow rubber duck in a shooting gallery. The man knows
that the duck is in one of the two cells in front of him, but he does
not know in which one. Moreover, this has been a long party, and he
is very tired, so he is only capable of using memoryless strategies at
the moment. Does he have a memoryless strategy which he knows
will achieve the goal? No. He can either decide to shoot to the left,
or to the right, or reach out to the cells and look what is in (note also
that the cells close in the moment after being opened). In each of
these cases the man risks that he will fail (at least from his subjective
point of view). Does he have an opening strategy that he knows will
guarantee his knowing how to shoot the duck in the next moment?
Yes. The opening strategy is to look; if the system proceeds to g4
then the second strategy is to shoot to the left, otherwise the second
strategy is to shoot to the right.



(shooty,, —)

Figure 2: “Modified poor duck model” M, with 2 agents a, b.
This time, we explicitly represent the agent (b) who puts the
duck in one of the cells.

Corollary 2 Val(ATL; r) C Val(ATLR).

By the same reasoning as above, Val(ATL;r) C
Val(ATLR). To settle the other direction, we need to use
another counterexample, though.

Proposition 5 Val(ATLr) € Val(ATL;R).

Proof. This time we consider the other direction of the fix-
point characterization for ((a))<:

0y = (@) Op = (pV {(@)O (a)Op).

$, is IR-valid, but it is not valid in igR. Consider the
“poor duck model” M; from Figure 1 but without the tran-
sitions corresponding to look leading from state ¢y to g4 and
from ¢ to gs. We call this model Mj and take p = shot.
Then, we have that M7, qs =, (a)©p, but Mi,q4 W,
pV {(a)O {(a))<p, which concludes the proof. |

Corollary3 Val(ATLiD,R) g Val(ATLIR) and Val(ATLiSR)
C Val(ATLy,).

3.2 Perfect Recall vs. Memoryless Strategies

Now we proceed to examine the impact of perfect vs. no
recall on the general strategic properties of agent systems.

Comparing ATLy, vs. ATLig
We have already mentioned that, in “vanilla” ATL, the Ir- and
IR-semantics coincide (Proposition 1). As a consequence,
they induce the same validities: Val(ATLy) = Val(ATLR).
Thus, regardless of the type of their recall, perfect informa-
tion agents possess the same abilities with respect to winning
conditions that can be specified in “vanilla” ATL. An inter-
esting question is: does it carry over to more general classes
of winning conditions, or are there (broader) languages that
can discern between the two types of ability? The answer
is: yes, there are. The Ir- and IR-semantics induce different
validity sets for ATL*, and in fact the distinction is already
present in ATL*. Moreover, it turns out that perfect recall
can be seen as a special case of memoryless play in the sense
of their general properties.

Our proof of Proposition 6 draws inspiration from the proof
of [1, Theorem 8.3]. We start with some additional notions
and two useful lemmata.
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delivered
Figure 3: Model M3: robot with multiple tasks

Definition 1 (Tree-like CGS) Let M be a CGS and q be
a state in it. M is called tree-like iff there is a state q (the
root) such that for every q' there is a unique finite sequence
of states leading from q to q'.

Definition 2 (Tree unfolding) Ler M (Agt, St, 11, 7,
Act,d,o0) be a CGS and q be a state in it. The tree-
unfolding of M starting from state q denoted T'(M, q) is de-
fined as (Agt, St', 11, @', Act,d’,0’) where St' = A{V}”(q),
d'(a,h) := d(a,last(h)), o'(h,d) := hoo(last(h), &), and
7' (h) := w(last(h)).

Lemma 1 For every tree-like CGS M, state q in M, and
ATL* formula @, we have: M, q =, ¢ iff M,q =n ¢

Proof sketch. Induction over the structure of ¢. The main
caseis ¢ = ((A)); to see that the proof goes through, observe
that the subtree of M starting from ¢ is also a tree-like CGS,
and on tree-like CGS’s Ir and IR strategies coincide. [ ]

Lemma 2 For every CGS M, state q in M, and ATL* for-
mula o, M, q |=n ¢ i T(M,q), q Frr ¢

Proof sketch.  Induction over the structure of . The
main case is again ¢ = ((A))y for which it is sufficient
to observe that (i) IR-strategies in M, q uniquely corre-
spond to IR-strategies in T (M, q),q; (ii) outpr(q,s4)
outp(nr,q) (g, sa) for every IR strategy s 4.

Proposition 6 Val(ATL;,) C Val(ATL)

Proof. Let an ATL* formula ¢ be Ir-valid in iCGS’s, then it
is also Ir-valid in tree-like CGS’s, and by Lemma 1 also IR-
valid in tree-like CGS’s. Thus, by Lemma 2, it is IR-valid in
arbitrary CGS’s. Since indistinguishability relations do not
influence =k, we get that ¢ is IR-valid in iCGS’s. [ ]

In particular, the subsumption holds for formulae of
ATL™. Moreover:

Proposition 7 Val(ATL{) ¢ Val(ATL;).

Proof. Consider formula
@3 = (@)(OP1AOP2) » (@)O(P1A(a)OP2VP2A (@) Opy).
The formula is valid in ATLﬁ'z [6]. On the other hand, its
right-to-left part is not valid in ATL;". To see this, we take
the single-agent CGS M3 from Figure 3 where agent a (the
robot) can either do the cleaning or the delivery of a package.
Then, for p; = clean, p, = delivered, we have M3, qo =,
(@) (pr A (a)Op2 V p2 A (@) Op1) but also Mg, qo [,
(@) (Op1 A Op2). .

Corollary 4 Val(ATL;") C Val(ATL).



kiss

angry suspicious

Figure 4: Model My with Agt = {a}: dangers of marital life

Comparing ATL; , vs. ATL; g and ATL; , vs. ATL; g
Now we compare the memoryless and perfect recall seman-
tics under uncertainty.

Proposition 8 Val(ATL; ) C Val(ATL; ).

Proofidea. The basic idea is similar to the one behind Propo-
sition 6. First, we define i,R-tree unfoldings of iCGS’s —
similar to unfoldings of CGS’s but extended with indistin-
guishability relations over histories (assuming perfect recall
of agents). Then we use structural induction to prove that the
truth of ATL formulae coincides in a model and its unfolding
(the tricky part is to show that, for nested temporal subformu-
lae, agents in the unfolding do not have more abilities despite
having more precise knowledge). Thus, i,R-satisfiability in
iCGS’s implies i,R-satisfiability in tree unfoldings, but on
tree unfoldings i,R and i,r strategies coincide. [ |

The converse does not hold:
Proposition 9 Val(ATL; r) € Val(ATL; )

Proof. To show this, we take the ATL embedding of the CTL
duality between combinators EO and A<C. In fact, only one
direction of the equivalence is important here:

D4 = ~(0)O—p — (Agt)Tp.

First, we observe that: (i) —((0))>—p expresses (regardless of
the actual type of ability being considered) that there is a path
in the system on which p always holds; (ii) in the “objective”
semantics the set out(g, sagt) always consists of exactly one
path; (iii) for every path A starting from ¢, there is an i,R-
strategy Sags such that out(q, sagt) = {A}. From these, it is
easy to see that @, is valid in ATL; .

Second, we consider model M, in Figure 4.2 Let us take
p = —angry A —suspicious. Then, we have My, qo |=,
=({(0)©O—p but also My, qo ¥, , (Agt))Op, which demon-
strates that ®4 is not valid in ATL; ;. [ |

Corollary 5 Val(ATL: ) C Val(ATL; Rr).

2The example depicts some simple traps that await a married man
if he happens to be absent-minded. If he doesn’t kiss his wife in the
morning, he is likely to make her angry. However, if he kisses her
more than once, she might get suspicious. It is easy to see that the
absent-minded (i.e., memoryless) husband does not have a strategy
to survive safely through the morning, though a “safe” path through
the model does exist (A = qoq1q1 - . .).
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Proposition 10 Val(ATL;_ ) C Val(ATL; r).

Proof idea. The proof is analogous to Proposition 8, but the
unfolding is now a forest that takes into account trees that are
subjectively possible from the agents’ point of view (also in
the subtrees — for nested strategic subformulae). [ ]

Finally, we consider the reverse direction.
Proposition 11 Val(ATL; r) € Val(ATL;,).

Proof. We take
@5

{a)O (a)Sp — (a)Op.

The formula states that if a has an opening move and a follow-
up strategy to achieve p eventually, then these can be inte-
grated into a single strategy achieving p already from the
initial state. It is easy to see that ®5 is valid in ATL; R,
and that the single strategy is just a concatenation of the two
strategies that we get on the left hand side of the implica-
tion. On the other hand, for the “poor duck model” M; and
p = shot, we get that M1, qo =, ((a)O {(a))<p but also
My, qo %, {(a))<p, so @5 is not valid in ATL;;. ]

Corollary 6 Val(ATL; ) C Val(ATL;R).

3.3 Between Subjective and Objective Ability

Finally, we compare validity sets for the semantic variants of
ATL that differ on the outcome paths which are taken into
account, i.e., whether only the paths representing the “objec-
tively” possible courses of action are considered, or all the
executions that are “subjectively” possible from the agents’
perspective.

Proposition 12 Formula &, = {(a)Op — p V
{a)O (a)y<Op is valid in ATL; g and ATL;_,, but invalid in

ATL; ¢ and ATL; ..

Proof. We first prove validity of ®5 in ATL; ,, which im-
plies also validity in ATL;_gr by Proposition 8. Suppose that
M,q =, {(a)©p, then there must be an ir-strategy s 4 that
enforces <p for every execution starting from ¢. But then, if
p is not the case right at the beginning, s 4 must lead to a next
state from which it enforces <p.

For the second part, invalidity of ®5 in ATL; g was already
proved in Proposition 5. Thus, by Proposition 10, ®5 is not
valid in ATL;_,, too. [ ]

Proposition 13 Let us define an additional operator N
(“now”) as Np = U p. Formula

06 = (@)N{c)O (ahOp — ((a, ch©p

is valid in ATL; r and ATL;,, but invalid in ATL; r and
ATL; .

Proof. Analogously to Proposition 12, we will prove the va-
lidity of ®¢ in ATL;_,, and its invalidity in ATL; gr.

First, let M, q |=,_, (a)N{c)O ((a)) O p. Then, for every
state ¢ € [g]~,, ¢ has an action «. that enforces {(a))Op
from [¢'] ... By collecting these actions into an ir-strategy s,
(we can do it since single actions are successful for whole



ATLiSR ATLioR

A A

ATLiSr ATLiOr

Figure 5: Summary: comparison of validity sets induced by
various semantics of ATL. The arrows denote strict subsump-
tion, i.e. Ly — Ly means that Val(L1) € Val(Lz). Uncon-
nected pairs of nodes correspond to logics with incompara-
ble validity sets. The double line indicates that the IR and
Ir semantics induce the same validities in “vanilla” ATL, but
different in the broader languages ATL* and ATL*.

indistinguishability classes of c), we have that s. enforces
O (a)Op from every state in [g]~, ., regardless of what
the other players do (in particular, regardless of what a does).
But then, for every execution A of s, from [g]., . a will
have a choice to enforce Op from A[1]. Again, collecting
these choices together yields an ir-strategy s, (we can fix the
remaining choices arbitrarily). By taking s{, .} = (54, 5¢),
we get a strategy for {a, ¢} that enforces that p will be true
in two steps, from every state in [q] Hence, also
M, q ., {a,c)Op.

For the invalidity, consider the “modified poor duck
model” M5 augmented with additional agent c that has no
choice (i.e., at each state, it has only a single irrelevant
action wazit available). Let us denote the new iCGS by
M. If we identify p with shot, it is easy to see that
M, q5 = (€)O (a)Op, and hence also My, gy =,
{a)N{cHO (ahOp. On the other hand, M}, q
{(a, ¢)y©p, which concludes the proof.

~ia,e}*

ioR

Corollary 7 For every y,z € {R,r}, the sets Val(ATL;_y)
and Val(ATL;_,) are incomparable.

4 Summary and Conclusions

In this paper, we compare validity sets for different semantic
variants of alternating-time temporal logic. In other words,
we compare the general properties of games induced by dif-
ferent notions of ability. It is clear that changing the notions
of strategy and success in a game leads to a different game.
The issue considered here is whether, given a class of games,
such a change leads to a different class of games, too. And, if
so, what is the precise relationship between the two classes.
A summary of the results is presented in Figure 5. The
first, and most important, conclusion is that all the semantic
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variants discussed here are different on the level of general
properties they induce; before our study, it was by no means
obvious. Moreover, our results show a very strong pattern:
perfect information is a special case of imperfect information,
perfect recall games are special case of memoryless games,
and properties of objective and subjective abilities of agents
are incomparable.
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