
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 2:3 (2022) Article #S2R22
https://doi.org/10.54550/ECA2022V2S3R22

Counting Condorcet

Rebecca Embar and Doron Zeilberger

Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd.,
Piscataway, NJ 08854-8019, USA

Email: re271@math.rutgers.edu DoronZeil@gmail.com

Received: April 27, 2022, Accepted: July 29, 2022, Published: August 5, 2022
The authors: Released under the CC BY-ND license (International 4.0)

In memory of Voting guru Peter Clingerman Fishburn (2 September 1936 - 10 June 2021)

Abstract: We give an elegant bijective proof that the number of vote-count profiles that lead to the famous
Condorcet paradox with three candidates and 2n-1 voters equals (n + 3)(n + 2)(n + 1)n(n − 1)/60. We then
use this bijection to efficiently enumerate the total number of Condorcet voting profiles with a given number of
(odd) voters, and related probabilities.
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1 Preface: Why yet another paper on the Condorcet Paradox?

One of the most fascinating paradoxes is the Condorcet Paradox [4] (see section 2.1 of [6] for a very lucid
and engaging account, and [3], section 8, and [5], for a comprehensive one). In its simplest form, there are n
voters and three candidates (let’s call them, unoriginally, 1,2, and 3 rather than the original Pierre, Paul, and
Jaques). Each voter must decide on one of the six complete rankings

123, 132, 213, 231, 312, 321.

Hence there are altogether 6n voting profiles. Suppose that x123 voters picked the ranking 123, x132 voters
picked the ranking 132, x213 voters picked the ranking 213, x231 voters picked the ranking 231, x312 voters
picked the ranking 312, and x321 voters picked the ranking 321.

So each voting profile leads, in a unique way to what we will call a vote-count profile.

[x123, x132, x213, x231, x312, x321].

For any two candidates i and j, where i 6= j and 1 ≤ i, j ≤ 3 we say that i beats j if the number of voters who
prefer i to j strictly exceeds the number of voters who prefer j to i.

A Condorcet scenario happens when there is a cycle : 1 beats 2, 2 beats 3, and, surprise!, 3 beats 1, or
vice versa.

A natural question is:
“Out of the 6n possible voting profiles, how many exhibits the Condorcet paradox?”
In this article, we will describe how to compute these numbers in linear time and constant memory (linear-

memory if you go by bit-size).
For example, we will show how to compute exactly this number when there are 199 voters. It happens to

be the following integer
6211370515760300852136923742146263204611276496186703609937916433495661887654521\

53230295756825424993178166865007031915448766743811211727287337544489420000.
Hence the probability of such a scenario, assuming that each voter picks a ranking uniformly at random,

and the choices are independent, is:

0.08731495004375520042327324685214106122590492980125416 . . .

Similarly, almost as fast, we can get the exact number of Condorcet voting-profiles with 19999 voters.
This happens to be a certain 15562-digit integer that is too large to reproduce here, but can be seen here:
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCondorcet3e.txt.
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It implies that the probability is

0.0877356075296129282604035628906239948940764715 . . . .

Using asymptotics we can very accurately estimate the limiting probability, as n goes to infinity. It agrees,
to any desired accuracy, with Guilbaud’s 1952 exact value (see [3], p. 205)

1

4
− 3

2π
sin−1(

1

3
) = 0.08773982805 . . . .

In particular, the present paper will result in a new sequence in the OEIS, that starts as follows
0, 12, 540, 21000, 785820, 28956312, 1058809752, 38545567632, 1399354322652, 50707958458872,

1835099465988360, 66348521294296176, 2397139928161319640, 86559958069097395440,
3124302168622853150640, 112729791393354644416800, . . .

Its description is ‘number of Condorcet voting profiles with three candidates and 2n − 1 voters (starting
with n = 1)’.

To our surprise, this important sequence (viewed April 21, 2022) was not in the OEIS [9]. Neither did
a search for 28956312 (the number with 11 voters) in JSTOR (that has 1879 articles containing the words
‘Condorcet’ and ‘Paradox’) return anything.

The Condorcet paradox is a precursor of Ken Arrow’s famous impossibility theorem [2] that states that
there does not exist any social choice function that is always guaranteed to give a clear-cut ranking of all
the candidates, under some very reasonable set of “axioms”. This theorem, which was the subject of a whole
book [2], and that ultimately lead to a Nobel prize, with the benefit of hindsight, now has a one-page proof [10].

2 Counting All Vote-Count Profiles

As mentioned above, a vote-count profile with n voters (and three candidates) is a list of non-negative integers

[x123, x132, x213, x231, x312, x321],

that add up to n, in other words, it is (what we call) a composition of n into 6 parts.

Definition 2.1. A composition of n into k parts is a list (x1, . . . , xk) of k non-negative integers that add-up
to n.

(Note that the usual definition of composition requires that the entries are strictly positive. Of course, there
is a trivial bijection between our kind of compositions of n into k parts and the usual kind of compositions of
n+ k into k parts.)

We first need a simple very well-known lemma.

Lemma 2.1. The number of compositions (in our sense) of n into k parts is(
n+ k − 1

k − 1

)
.

Let’s recall three proofs.
First Proof The (ordinary) generating function of the set of non-negative integers is 1 + x + x2 + · · · = 1

1−x .

Hence the generating function of compositions into k parts is ( 1
1−x )k = (1 − x)−k. Hence the number of the

compositions of n is the coefficient of xn in (1− x)−k, in other words

(−1)n
(
−k
n

)
= (−1)n

(−k)(−k − 1) · · · (−k − (n− 1))

n!
=

k(k + 1) · · · (k + n− 1)

n!
=

(
n+ k − 1

k − 1

)
.

Second Proof Let A(n, k) be the number of compositions of n into k non-negative integers. Let (x1, . . . , xk)
be such a composition. If xk = 0 then it is equinumerous with A(n, k − 1). If xk ≥ 1 then mapping it to
(x1, . . . , xk−1, xk − 1) gives an element counted by A(n− 1, k). Hence

A(n, k) = A(n, k − 1) + A(n− 1, k).

Now use induction to prove that A(n, k) =
(
n+k−1
k−1

)
.

Third Proof The mapping

(x1, . . . , xk)→ {x1 + 1, x1 + x2 + 2, . . . , x1 + x2 + · · ·+ xk−1 + k − 1},

is a bijection to the family of (k − 1)-element subsets of {1, 2, . . . , n+ k − 1}.
Hence we have the following corollary.

Corollary 2.1. The total number of vote-count profiles with three candidates and 2n− 1 voters is(
2n+ 4

5

)
.
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3 Counting Condorcet Vote-Count Profiles

Given a vote-count profile [x123, x132, x213, x231, x312, x321], when does it produce a 1→ 2→ 3→ 1 cycle?
1 beats 2 if

x123 + x132 + x312 > x213 + x231 + x321; (C12)

2 beats 3 if
x123 + x213 + x231 > x132 + x312 + x321; (C23)

3 beats 1 if
x231 + x321 + x312 > x213 + x123 + x132. (C31)

So we have to count, out of all the compositions of 2n − 1 into 6 parts those that satisfy the above three
inequalities (and at the end double them to account for the reverse cycle).

We will now prove the following crucial theorem and give an elegant bijective proof.

Theorem 3.1. The number of Condorcet vote-count profiles with three candidates and 2n− 1 voters is

2

(
n+ 3

5

)
.

Proof. Consider the affine-linear mapping from compositions of n−2 into 6 parts to 1231 Condorcet vote-count
profiles

[x1, x2, x3, x4, x5, x6]→ [x1 + x4 + x6 + 1, x2, x3, x2 + x4 + x5 + 1, x3 + x5 + x6 + 1, x1].

In other words
x123 = x1 + x4 + x6 + 1, x132 = x2, x213 = x3,

x231 = x2 + x4 + x5 + 1, x312 = x3 + x5 + x6 + 1, x321 = x1.

It is readily seen that indeed

x123 + x132 + x213 + x231 + x312 + x321 = 2n− 1,

and that the three inequalities (C12), (C23) and (C31) hold. Indeed

(x123 + x132 + x312)− (x213 + x231 + x321) = 2x6 + 1 > 0,

(x123 + x213 + x231)− (x132 + x312 + x321) = 2x4 + 1 > 0,

(x231 + x321 + x312)− (x213 + x123 + x132) = 2x5 + 1 > 0,

since all the xi are (by definition) non-negative.
The inverse bijection is

[x123, x132, x213, x231, x312, x321]→ [x1, x2, x3, x4, x5, x6].

where
x1 = x321, x2 = x132, x3 = x213,

x4 =
(x123 + x213 + x231)− (x132 + x312 + x321)− 1

2
,

x5 =
(x231 + x321 + x312)− (x213 + x123 + x132)− 1

2
,

x6 =
(x312 + x132 + x123)− (x321 + x231 + x213)− 1

2
.

Note that x1, x2, x3 are non-negative, of course, and so are x4, x5, x6 thanks to the three inequalities. Also
adding them gives n− 2 (check!).

It is also readily seen that these mappings are inverses of each other. Hence the number of Condorcet
vote-count profiles with 2n − 1 voters and the cycle 1231 equals the number of compositions of n − 2 into 6
parts, that by the above lemma equals

(
n−2+5

5

)
=
(
n+3
5

)
. By symmetry, the number of vote-count profiles with

the reverse cycle also equals this, so doubling proves the theorem.
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Corollary 3.1. If every vote-count profile is equally likely, the probability of it being Condorcet is

2
(
n+3
5

)(
2n+4

5

) ,
that converges to 1

16 = 0.0625 as n→∞.

Counting Condorcet Voting-Profiles
Each vote-count profile with 2n− 1 voters

[x123, x132, x213, x231, x312, x321],

gives rise to
(2n− 1)!

x123!x132!x213!x231!x312!x321!

voting-profiles (where order matters).
What’s nice about our bijective proof is that it gives us a ‘parametric representation’ of a typical Condorcet

vote-count profile, and hence we immediately have the following proposition.

Proposition 3.1. Let a(n) be the number of Condorcet voting-profiles with three candidates and 2n− 1 voters,
then it is given by the following 5-fold sum:

a(n) = 2

n−2∑
i1=0

n−2−i1∑
i2=0

n−2−i1−i2∑
i3=0

n−2−i1−i2−i3∑
i4=0

n−2−i1−i2−i3−i4∑
i5=0

(2n− 1)!

(n− 1− i2 − i3 − i5)!i2!i3! (i2 + i4 + i5 + 1)! (n− 1− i1 − i2 − i4)!i1!
.

It follows from Wilf-Zeilberger theory [8], and more specifically from the multi-variable Zeilberger algo-
rithm, that there exists a linear recurrence with polynomial coefficients. It can be easily found algorithmi-
cally [1], but it is even easier to find it by ‘guessing’ that can be made fully rigorous a posteriori. This leads to
the next theorem.

Theorem 3.2. The number of Condorcet voting profiles with three candidates and 2n − 1 voters, let’s call it
a(n), satisfies the following third-order recurrence

a(n) =
4
(
19n2 − 57n+ 45

)
(n− 1)

2 · a(n− 1)−
36 (2n− 3)

(
22n2 − 99n+ 111

)
(n− 2) (n− 1)

2 · a(n− 2)

+
1296 (n− 3) (2n− 3) (2n− 5)

(n− 2) (n− 1)
2 · a(n− 3),

subject to the initial conditions a(1) = 0, a(2) = 12, and a(3) = 540.

Using this recurrence we can compute many terms! See https://sites.math.rutgers.edu/~zeilberg/

tokhniot/oCondorcet3b.txt.
Restricted Choices

Suppose that instead of allowing all six rankings, every voter has to pick from the restricted set {123, 231, 312}.
Using similar reasonings we have the following theorem.

Theorem 3.3. The number of Condorcet voting-profiles where all the choices are from {123, 231, 312}, let’s
call it b(n), satisfies the second-order linear recurrence

36 (2n+ 1) b(n)

n+ 1
− (17n+ 13) b(n+ 1)

n+ 1
+ b(n+ 2) = 0,

subject to the initial conditions b(1) = 0 and b(2) = 6.

For the sake of the OEIS, the first 12 terms:

0, 6, 90, 1050, 11130, 112266, 1099098, 10550826, 99899514, 936435786, 8711707290, 80572452714.

Loaded Choices
If each voter, independently, rolls a six-faced die marked with the six permutations of {1, 2, 3} where the

probability of the ranking π is pπ then, again thanks to the bijection we have the following proposition.
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Proposition 3.2. If each of the 2n− 1 voters, picks, independently, one of the six ranking with distribution

[p123, p132, p213, p231, p312, p321],

(where of course they add up to 1), then the probability of a Condorcet voting-profile is given by the following
5-fold sum

2

n−2∑
i1=0

n−2−i1∑
i2=0

n−2−i1−i2∑
i3=0

n−2−i1−i2−i3∑
i4=0

n−2−i1−i2−i3−i4∑
i5=0

(2n− 1)!·

pn−1−i2−i3−i5
123

(n− 1− i2 − i3 − i5)!
· p

i2
132

i2!
· p

i3
213

i3!
· pi2+i4+i5+1

231

(i2 + i4 + i5 + 1)!
· pn−1−i1−i2−i4

312

(n− 1− i1 − i2 − i4)!
· p

i1
321

i1!
.

This enables us to easily compute the Condorcet probability for n ≤ 50 (i.e. up to 99 voters). Alas, while
we know for sure that there is a recurrence, for general p123, . . . , p321, it was too complicated for our computer
to discover, since it involves symbol-crunching with five free parameters.

Nevertheless, we found recurrences for two important special cases. One with two parameters, and the other
one with one parameter. Before stating them, let’s make a few observations about the limiting probabilities.

If in the three inequalities (C12),(C23),(C31), you replace x123 by p123 etc., and they all strictly hold,
or all strictly do not hold, then, since the expectations of xπ is n pπ for (π ∈ S3), it follows from the Law
of Large Numbers, that the probability of a Condorcet scenario always tends to 1 (with cycles 1231 and 3213
respectively), as n goes to infinity. If one of the three inequalities strictly hold but the other two strictly do not
(or vice versa), then the probability goes to 0. If two of them strictly hold and one becomes equality, or if two
of them strictly do not hold and one becomes equality, then the probability of a Condorcet tends to 1

2 .

4 The Border-Line Distributions

It follows that the interesting cases are those where all the three inequalities (C12), (C23), and (C31), with
the xπ replaced by pπ, turn into equalities. These are the only probability distributions on S3 where the
limiting probabilities of Condorcet are not one of {0, 12 , 1}. This happens if and only if

p123 + p132 + p312 = p213 + p231 + p321,

p123 + p213 + p231 = p132 + p312 + p321,

p231 + p321 + p312 = p213 + p123 + p132,

and of course,
p123 + p132 + p213 + p231 + p312 + p321 = 1.

It is easy to see that a parametric solution of these four equations with six unknowns is:

[p123 , p132 , p213 , p231 , p312 , p321] =

[
x ,

1

2
− x− y , y , 1

2
− x− y , y , x

]
,

where 0 ≤ x, y and x+ y ≤ 1
2 . We call these distributions the borderline cases.

We did not succeed in computing a recurrence for the Condorcet probability in the general border-line case
(i.e. for general x and y), but when x = y we have the following theorem.

Theorem 4.1. Suppose that each of the 2n − 1 voters independently picks each of the rankings 123, 213, 312
and 321 with probability x, and each of the rankings 132 and 231 with probability 1

2 − 2x, where, of course,
0 ≤ x ≤ 1

4 , then, the probability of a Condorcet scenario satisfies a certain fifth-order linear recurrence equation
with polynomial coefficients that is too complicated to reproduce here, but can be found in the following output
file https: // sites. math. rutgers. edu/ ~ zeilberg/ tokhniot/ oCondorcet3f. txt .

5 A recurrence where the only allowed rankings are 123,231,312

We have the following theorem.

Theorem 5.1. Suppose that each of the 2n−1 voters independently picks the ranking 123 with probability p123,
the ranking 231 with probability p231 and the ranking 312 with probability 1−p123−p231 then, the probability of a
Condorcet scenario, let’s call it, c(n), satisfies a certain fourth-order linear recurrence equation with polynomial
coefficients that is too complicated to reproduce here, but can be found in the following output file https:

// sites. math. rutgers. edu/ ~ zeilberg/ tokhniot/ oCondorcet3d. txt .
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The Maple package Condorcet3.txt

Everything here (and more) is implemented in the Maple package Condorcet3.txt, available from the front
of this article https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cond3.html, where there
are also numerous output files. The main procedures are
• NuCo(n): inputs a positive integer n and outputs the exact number of Condorcet voting profiles with three

candidates and 2n− 1 voters. For example, to get the number with 19999 voters, type NuCo(10000);

• PrCo(n,P): that inputs a positive integer n and a probability distribution on S3,

P = [p123, p132, p213, p231, p312, p321],

and outputs the probability of a Condorcet scenario with three candidates and 2n − 1 voters. Since we were
unable to find a recurrence, it does it directly, using Proposition 2. Hence can only go as far as n = 50 in a
reasonable amount of time. For example, to get the probability (in decimals) of a Condorcet scenario with 59
voters and probability distribution [1/8, 1/8, 1/8, 1/8, 1/8, 3/8], type
evalf(PrCo(30,[1/8,1/8,1/8,1/8,1/8,3/8]);

getting 0.016838561353436318553 . . . .
The corresponding probability with 79 voters is gotten from

evalf(PrCo(40,[1/8,1/8,1/8,1/8,1/8,3/8])); getting 0.00888551620820918 . . . . Note that it tends to 0, as
it should.
• PrCoSp(n,p123,p231): it inputs a positive integer n and positive numbers p123, p231 such that their

sum is less than 1, and computes the Condorcet probability with 2n−1 voters if each voter picks, independently,
123 with probability p123, 231, with probability p231 and 312 with probability 1-p123-p231. Since it uses the
above-mentioned recurrence, one can go very far.

For example, to get the probability when there are 1999 voters and the probability of a 123 is 1
4 , the

probability of a 231 is 1
5 , (and hence the probability of 321 is 11

20 , type
evalf(PrCoSp(1000,1/4,1/5));

getting 3.683198869 · 10−6.
• PrCoEq(n,x): it inputs a positive integer n and a positive number x (between 0 and 1

4 , or leave x symbolic),
and it outputs the probability of a Condorcet scenario with the probability distribution

[p123, p132, p213, p231, p312, p321] = [x,
1

2
− 2x, x,

1

2
− 2x, x, x].

(Note that this is a borderline case). For example, typing
evalf(PrCoEq(2000,1/10));

gives 0.07718855192, which tells you that this is the probability of a Condorcet scenario (with three candidates,
as always in this paper) with 3999 voters, if each voter, picks, independently, 123, 213, 312, and 321 each with
probability 1

10 and picks 132 and 231 each with probability 3
10 .

Again since we have a recurrence, we can go very far. Note that x can also be symbolic. Typing
plot(PrCoEq(100,x),x=0..1/4);

would give a nice plot viewable here: https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/
cond3plot.html.

In addition, we have a simulation procedure ApCo(v,P,K), that estimates the probability of a Condorcet
scenario with a loaded die P and v voters, by running it K times. We are happy to report that all our predictions
were confirmed, within the sampling error.

6 Conclusion and Further Work

We have defined an elegant, human-generated, bijection between compositions of n− 2 into six parts, and Con-
dorcet vote-count profiles with three candidates and 2n − 1 voters, which proved that their number is 2

(
n+3
5

)
.

Next, we employed this useful bijection, combined with algorithmic proof theory [8] and experimental mathe-
matics, to enumerate Condorcet voting profiles with three candidates, and to efficiently compute probabilities
of interest.

We implemented everything in Maple and produced lots of interesting output. Most importantly we have
created two new sequences for the OEIS [9].

It would be interesting to extend our approach to other situations, for example, the one discussed in [7], and
for a number of candidates larger than three.
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