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Abstract

Dysgraphia is a writing disorder that affects a significant part of the population, especially
school aged children and particularly boys. Nowadays, dysgraphia is insufficiently diag-
nosed, partly because of the cumbersomeness of the existing tests. This study aims at de-
veloping an automated pre-diagnosis tool for dysgraphia allowing a wide screening among
children. Indeed, a wider screening of the population would allow a better care for children
with handwriting deficits. This study is based on the world’s largest known database of
handwriting samples and uses supervised learning algorithms (Support Vector Machine).
Four graphic tablets and two acquisition software solutions were used, in order to ensure
that the tool is not tablet dependent and can be used widely. A total of 580 children from
2nd to 5th grade, among which 122 with dysgraphia, were asked to perform the French
version of the BHK test on a graphic tablet. Almost a hundred features were developed
from these written tracks. The hyperparameters of the SVM and the most discriminating
features between children with and without dysgraphia were selected on the training dataset
comprised of 80% of the database (461 children). With these hyperparameters and features,
the performances on the test dataset (119 children) were a sensitivity of 91% and a specificity
of 81% for the detection of children with dysgraphia. Thus, our tool has an accuracy level
similar to a human examiner. Moreover, it is widely usable, because of its independence
to the tablet, to the acquisition software and to the age of the children thanks to a careful
calibration and the use of a moving z-score calculation.

Keywords: BHK test, Children, Diagnosis, Dysgraphia, Handwriting, SVM.

114
Citation: Louis Deschamps, et al. Development of a Pre-Diagnosis Tool Based on Machine Learning Algorithms on the BHK Test to
Improve the Diagnosis of Dysgraphia. Advances in Artificial Intelligence and Machine Learning. 2021;1(2):8.



https://www.oajaiml.com/ | August-2021 LOUIS DESCHAMPS, ET AL.

1. INTRODUCTION

Dysgraphia is a generic term used to describe handwriting deficits that lead to a poor-quality and/or
slow script. Here, the most common definition is considered, as being a disturbance or difficulty
in the production of written language that is related to the mechanics of writing and the result of
a failure to acquire the fine motor task of handwriting [1–4]. Depending on the country and the
method used, the proportion of children in the population varies between 5 and 34% [5, 6]. School
aged children, and particularly boys, seem to be the most affected.

The Concise Evaluation Scale for Children’s Handwriting (BHK) is the gold standard test used to
evaluate handwriting quality and speed and to diagnose dysgraphia in France [1]. It relies on the
assessment of 13 qualitative criteria (such as the tilt of the margin, the size of the letters or the
space between words). The number of characters written by the child during the 5 minutes of the
test is also registered, to estimate handwriting speed. Children can be diagnosed as dysgraphic
based on their score on the 13 qualitative criteria or on their average writing speed. Very specific
instructions are given to the people in charge of evaluating the writing, in order to make the test
as objective as possible. Nevertheless, despite training of the examiners, some of the qualitative
criteria remain subjective, such as ambiguous letters or chaotic writing, which is a potential source
of false negatives. In addition, this test only analyses the final product of handwriting, and does not
take into account the dynamic aspects of the writing process. Nowadays, the use of graphic tablets
enables to record the pen motion during handwriting with high spatial and temporal resolutions.
These tools thus allow access to hidden kinematic features reflecting neuromotor processes.

The objective of our work is to design a machine learning classifier relying on dynamic spatio-
temporal handwriting texts collected from children with and without dysgraphia, to help in the
diagnosis of dysgraphia. Once designed, this tool should be easy to scale up, faster and cheaper
than the actual process. Mekyska et al. [2] designed a performing tool to pre-diagnose dysgraphia
based on writing a sequence of seven semi-letters, but their study focused on a limited population
(27 children with dysgraphia, 27 typically developing ones) and relies primarily on two tablet-
dependent features: pen pressure and pen tilt data [7]. Asselborn et al. [3] also developed a similar
tool based on the handwriting of BHK texts that seemed very effective at first sight but appeared
lately flawed by some methodological issues that made their conclusions weaker [4]. These issues
include the use of distinct tablets for acquiring data from children with and without dysgraphia
respectively, which create an undesirable bias. Indeed, their algorithmmay be biased to classify data
from the two kinds of tablets rather than to detect children with dysgraphia. Their database consisted
in 56 children with dysgraphia and 242 control children. Importantly, according to literature, 5 to
10% of these control children are expected to display dysgraphia, but this fact was not considered
in their analyses. Moreover, all children with dysgraphia were recruited at the Reference Center for
Language and Learning Disorders of the Grenoble Hospital. Therefore, all these children suffered
from severe dysgraphia, which certainly introduced a bias in the model toward recognizing only
the most severe dysgraphia, as demonstrated recently [8]. Thus, when used with children from a
wider range of origins, notably children with less severe dysgraphia such as some children from
schools, this model could present difficulties to detect less severe cases of dysgraphia. These biases
were partly corrected in their new study [9] by using an IPad to acquire all their BHK texts. Once
again, the results shown in this paper are very good, but they might not be easily generalizable.
Indeed, writing on a tablet is quite different from writing on a paper sheet, and it has been shown
to affect movement control and execution, especially in children [10-12]. Moreover, to achieve a
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generalizable model, it is preferable to acquire data from different models of tablets and to use those
in all groups. It is also important to mix mild and severe dysgraphia. Finally, Dimauro et al. [13]
obtained interesting results by focusing on the BHK features and trying to rate them as a human
examiner would.

Most of the studies about dysgraphia are based on small population, around 30 or 40 children
[5, 6, 14-16] and have a descriptive approach, trying to determine whether a variable seems dis-
criminant or not. Our approach is different as we mainly use the features previously demonstrated
as discriminant to predict if a child has dysgraphia or not. Acquiring the data with different tablets
and software solutions allowed us to determine that some of these features seemed too dependent
on the acquisition equipment to be used in a large-scale tool. In addition, our study is based on
the largest dataset of labeled handwritten samples ever published (580 children). For each children,
we recorded the position of the pen tip, sampled every 5ms, during the writing of the BHK test.
In-air movements were also recorded. We chose to use the BHK test because it has been largely
validated as a good diagnosis tool. Out of 580 children, 122 had dysgraphia. Although imbalanced,
our dataset is larger and more representative of children with dysgraphia than previous studies. Our
objective is thus to develop a more reliable tool based on a large database, with different origins
for generalizability and a very rigorous methodological approach in order to avoid overfitting of the
model.

2. MATERIAL AND METHODS

In this part, we describe the method applied to create the dysgraphia pre-diagnosis tool, from the
participants selection to the machine learning framework.

Participants

In total, 580 children were recruited, from 2nd to 5th grade. 450 of them come from 7 differ-
ent schools (23 classes) near Grenoble, France. Schools were selected to include different socio-
economic environments. The 130 other childrenwere recruited at the ReferenceCenter for Language
and Learning Disorders of the Grenoble University Hospital (CRTLA, Centre HospitalierUniversi-
taire Grenoble), where they came in the context of various neurodevelopmental disorders.

Task and Procedure

All the children involved in this study have written the BHK text on an A5 blank paper affixed in
the landscape format to a graphic tablet. The pen was inked to ensure conditions of writing close
to those of the classroom. Four different Wacom graphic tablets and two software solutions have
been used in order to ensure that our results are not dependent on the equipment. The “Ductus”
software was developed by LPNC in 2010 [17]. The “Graph Logger” software was developed at
CEA-Leti. Both of themwere calibrated carefully as follows: to check the written length calibration,
we measured different distances on the real written tracks made by the children on paper. The same
distances were measured on the computer database. These distances were then compared to check
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the reliability of the tablets and software solutions. The sampling frequency was fixed at 200Hz and
the spatial resolution at 0.25mm. TABLE 1 summarizes the information about the graphic tablets
and software solutions used.

Table 1: Summary of graphic tablets and software solutions used to acquire the data

Software Graph Logger Ductus
Population Schools Hospital Schools Hospital
Tablet Wacom Pro M Wacom Pro L Wacom 4M Wacom 3L

Size (mm) 224 × 148 311 × 216 223 × 139 300 × 200
Numberof children 258 29 192 101

The conditions in which the children were performing the test were the same for all children. The
instructions given to the children were those explained in the BHK reference book [1]. Whatever
the tablet size, the same size of paper sheet (A5) was used for the test. We ensured that the writing
posture was the same for all children.

The 5 first lines of all BHKs were scored by 1 to 3 trained therapists [8]. Mean quality and
speed scores were then computed and children were assigned to the Dysgraphia (D) group if at
least one of the 2 scores was beyond 2 standard deviations from the normative group. In this
article “Dysgraphia” (D) refers to children from the hospital or from schools who presented a
dysgraphia. “No dysgraphia” (ND) refers to children from the hospital who did not present a
dysgraphia. “Typical” (TD) refers to the typically developing children from the schools, who
did not present dysgraphia. In TABLE 2, the ND children are shown separately from others to
emphasize their relatively low scores compared to the TD children. When designing classification
algorithms, TD and ND groups were merged into a single group (no dysgraphia) and opposed to the
D group.

Among the population acquired at CRTLA between 2nd grade to 5th grade, 92 children out of
130 (71%) presented a dysgraphia based on the BHK, while the 38 other children (29%) did not.
TABLE 3 and FIGURE 1 summarizes the scores and number of children according to their diagnosis
and to the places where they have been recruited.

Table 2: Number of children between 2nd and 5th grade in the database according to the origin and
the diagnosis.

Schools Hospital Total
Typical (TD)
Number 420 0 420

Withdysgraphia (D)
Number 30 92 122

No dysgraphia (ND)
Number 0 38 38

All Annotations
Number 450 130 580
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Table 3: Quality and Speed scores for each category.

Mean quality score (std) Mean speed score (std)
Typical (TD) 0.058 (0.92) 0.66 (1.0)

With dysgraphia from school (D) −2.6 (0.76) 0.067 (1.35)
With dysgraphia from hospital (D) −3.1 (1.29) −1.1 (1.08)

No dysgraphia (ND) −0.92 (0.66) −0.60 (0.73)

Figure 1: Quality and Speed scores with p-values.One the left the quality scores, on the right the
speed scores of the BHK for each category. TD and ND don’t have dysgraphia but
have different scores. D schools (children with dysgraphia from school) and D hospital
(children with dysgraphia detected at the hospital) both have dysgraphia but it is less
severe for D schools (better quality and speed score).* : p < 0.05 ; ** : p < 0.005.

Data Processing

For each child, the gender, laterality, age and grade were recorded. During the acquisition, at each
time stamp, 7 coordinates are registered: the time, the x, y, z positions (up to 1 cm above the tablet)
of the pen tip, the pressure applied by the pen on the tablet, and the azimuth and altitude angles of
the pen with the tablet.

Coordinates Preselection

Although pressure has previously been considered by several groups as discriminative when study-
ing handwriting deficits [18,19], Danna et al. [7] pointed out two limits of pressure quantification.
The first one is the fact that pressure highly depends on the tilt of the pen with respect to the writing
surface. This leads to very different pressure measurements because of tilt variations and not of
pressure changes. Moreover, with standard graphic tablets, the pressure depends on the pen that is
used. This leads to significant differences between the values acquired with different tablets and/or
pens. This is an important issue for large studies as the one described in this paper, involving a large
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number of subjects, making the use of only one tablet and one pen impossible. Tablet dependency
has also been noticed for pen tilt with regard to the tablet. Moreover, we noticed some important
irregularities in the pressure values in our database that could ultimately lead to a bias in the pre-
diagnosis tool. For these reasons, we decided not to use the pen pressure and pen tilt data to create
our models.

Filtering

To get rid of any noise that might cause a tablet dependency, a low pass fourth order Butterworth
filter with a cut-off frequency of 15 Hz was applied on all the data. We chose the frequency of 15 Hz
after a bibliographic study comparing the frequencies used in several articles [20-23]. In general,
all the handwriting information is found between 0 and 10 Hz, most of it being located around 5
Hz. Choosing a cut-off frequency of 15 Hz allowed us to include all the writing information while
attenuating the high frequency noise. The Fast Fourier Transform (FFT) algorithm has been applied
on the x and y components of the pen speed, corroborating the fact that no important information
about the writing process is found above 15 Hz.

Features Extraction

More than 90 features were implemented in total. Some of them are very specific to the BHK test,
such as line or margin inclination, and others are more general. To stay as close as possible to the
BHK test, we decided to analyze only the first five lines written by the children although some
children wrote more. We developed an algorithm able to recognize the first five lines written by
each child and calculated all our variables on these lines. When the algorithm failed to recognize
the five lines (because of a very poor-quality handwriting for instance), we selected them manually.
This happened for 99 children out of 580 (17%). Thanks to this manual correction, we were able to
ensure the same number of written lines taken into account for all children.

The counting features (number of velocity peaks, number of draw backs…) were used raw, and
normalized by the writing time. This allowed the models to have access to the value of the features
on the 5 lines of the BHK, and per unit of time. The main variables we used are described below:

BHK Specific Features

• The features that are specific to the BHK are listed below.

• Continuity: difference on the y axis between consecutive words for each line. The median,
the standard deviation, the 25 and 75% quantiles were computed.

• Crow flies: sum of the distances between consecutive strokes.

• Draw backs per line: a draw back is a stroke that belongs to a previous word than the current
one. This feature corresponds to the number of draw backs divided by the number of lines.

• Lines height: median of the differences between the highest and lowest points of each line.
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• Margin evolution: for each line, the margin is defined as the x coordinate of the leftmost
point. The difference between the consecutive lines was computed. Features calculated were
the median and the standard deviation of these differences. The average of the significant
differences (>2 mm) was also computed.

• Slopes of the lines: for each line, we calculated the linear regression of all points included
in that line. We extracted the standard deviation of the slopes of all lines to quantify the
consistency of the lines.

• Space between lines: mean difference on the y coordinate of the leftmost point for each line.

• Space between words: the space between each word was calculated. We extracted the mean,
the median, the standard deviation, and the 75% quantile.

• Standard deviation of the distance between the points of a line and the linear regression cor-
responding to this line. The goal of this feature is to evaluate the regularity of the written line
around the corresponding linear regression. The standard deviation of this feature among the
lines is computed to estimate the regularity of the writing during the task.

• Telescoping per line: number of strokes with a point closer than 0.5 mm to a stroke of the next
line, divided by the number of lines.

• Width and Height: the width is the difference between the highest and lowest x coordinates
of all points. The height is the difference between the highest and lowest y coordinates of all
points.

Figure 2: Illustration of feature SNvpd on a “g” written by a subject. Here the SNvpd is 4 − 2 = 2.

General Features

• The more general features, which could be applied to all sort of stimuli, are listed below.

• Average Normalized Jerk: the jerk is the third time derivative of the position. It has been
shown to be a discriminative feature to identify children with dysgraphia [7]. We computed
the Average Normalized Jerk (ANJ) as described in [7].

• Distance to moving average: two features were extracted. The first one is the percentage of
variation between the true writing path and the moving averaged path of order 11. The second
one is the average distance from real points to moving average points.
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• Lift Time: lift time is the time spent during the writing task with the pen tip in the air. Four
features are computed: total lift time, ratio of total lift time by record time, mean lift duration
and standard deviation of the lifts duration.

• Meanwriting velocity: this feature extracts the ratio between the written length and the writing
time. Thus, it does not take into account the time and distance when the pen is in the air.

• Slow moves: a slow move starts when less than 1mm is written in 150 ms and ends when the
local speed is higher than 1/150 for at least 3 consecutive points. We extracted the number
of slow moves, the mean, median and standard deviation of their duration. The ratio between
the total slow moves length and the total written length was also calculated as well as the ratio
between the total slow move time and the total writing time.

• SNvpd: this feature was defined in [7]. It consists in subtracting the number of velocity peaks
when filtering the signal with a low-pass filter with a cut off frequency of 5 Hz to the number
of velocity peaks when filtering the signal with a low-pass filter with a cut off frequency of 10
Hz (cf FIGURE 2). Danna et al. [7] demonstrated its efficiency to describe abnormal velocity
fluctuations in cursive handwriting. Thus, this feature might be performing to discriminate
children with dysgraphia from the others.

• Stops: stops were only taken into account when the pen tip still touches the paper. A stop
starts when less than 0.01 mm is written in 5 ms and ends when more than 0.01 mm is written
in 5 ms. The number of stops, their mean, median and standard deviation of their duration
were used.

• Abnormal stops: abnormal stops are defined as stops longer than 35ms. Looking at this
abnormal stops has been recommended by Paz-Villagran et al. in [24].

• Stops on the x/y axis: a stop on a specific axis is defined as a normal stop. It starts when less
than 0.01 mm is written on the current axis in 5 ms, and ends when more than 0.01 mm is
written on the same axis in 5 ms.

• Record Time: Total Time taken by the subject to write the stimulus (here the 5 BHK lines).

• Strokes: this feature calculates the number of strokes the child has drawn during the writing
task, as well as the mean, maximum and the standard deviation of their duration. The number
of strokes could be higher for childrenwith dysgraphia once reported to a samewritten distance
or writing time.

• Velocity peaks: the number of velocity peaks is supposed to be higher for children with
handwriting difficulties [21]. Here, we chose to extract the number of velocity peaks, but
also the mean, median and standard deviation of the amplitude of the peaks.

• Writing length: this feature extracts the total length of the “on-paper” trace.

• Writing time: this feature extracts the total “on-paper” time.

• Rényi Entropy of order 2 [25]: delivers an information about the entropy of the trajectory
along x axis (resp. y or (x, y)). The entropy rate is linked to the uncertainty of the path,
which manifests through a chaotic and unpredictable handwriting that is typical of children
with dysgraphia. Their total Rényi Entropy (1) is supposed to be higher in absolute value. We
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also extracted the mean and standard deviation of the Rényi entropy of the standardized and
normalized strokes.

𝑅𝐸2 = − log(
𝑁−1∑
𝑖=2

𝑝𝑖
2) (1)

• where N is the number of dots in the signal of interest (which is either x or y or the two-
dimensional time series of both x and y), and p are the probabilities of each dot i to be where
they are considering that the handwriting is a strictly uniform movement.

• Signal-to-Noise Ratio (SNR) [25]: reveals quick and unexpectedmovements from the children
by comparing the trajectory along x (resp. y) to its smoothed version obtained by applying a
basic low-pass-filter. Children with dysgraphia shall have a lower value for this feature. We
have modified this feature as it appears in [25] because the energy term was not relevant in its
computation (2).

𝑆𝑁𝑅 =
1
𝑁

× 1
N(s) (2)

• where N is the number of dots in the signal s (which is either x or y). N(s) represents the noise
of the signal. It is computed as the sum of the squared difference between the signal and its
smoothed version.

Machine-Learning Approach

Train/Test split: In order to be able to validate the performances of the classification model on
a completely separate, unseen dataset, the full database was split into a train dataset (80% of the
children) and a test dataset (20 % of the children) from the start. These datasets were carefully
made in order to keep the same proportion of children with and without dysgraphia in each of them.
Moreover, the same proportion of children in each grade was kept. All the following processing
steps were applied on the train dataset only, to avoid any data leakage.

Moving z-Score calculation: One of the main challenges to develop a performing diagnosis tool is
the wide range of ages and grades. It is indeed not possible to compare straightforwardly 6 years old
children to 10 years old ones, as handwriting skills improve very quickly during this developmental
window. Adding the age and grade of the children in the inputs of the classifier improved the
performances, but a bias was still present.

To limit the influence of age and grade, we used a moving z-score method. The idea was to
standardize the calculated features in a similar way to the BHK test. First, the raw scores of all
features were calculated for all participants. Then for each child, we selected all the children of the
same grade, or of similar age (+/- 6 months). Only the children recruited in schools, representative
of the population, were taken into account at that point. The mean and standard deviation of all
features were calculated among these children. Finally, the z-score for each feature was calculated
using these moving mean and standard deviation. With this method, each child was compared
to a unique set of children who are in the same grade than him/her and/or are close to his/her age.
FIGURE 3a presents the raw score of the feature “Stroke Mean Time” for all children, and FIGURE
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3b presents the moving z-score of the same feature. The z-scored feature is much more appropriate
than the raw score, as it allows a straightforward comparison between children of different ages.

All classification models were developed to use the moving z-scored features as input.

Figure 3: Mean duration of the strokes of all children as a function of age, without (a) and with (b)
moving z-score computation.

Features Preselection

In order to make a preselection of the discriminative features, the Fisher criterion method has
been used. This method consists in computing the ratio between the inter-class variance and the
intra-class variance for each feature. The features maximizing this ratio are potentially efficient
to discriminate the different classes of the problem. As explained in [26], this method selects each
feature independently according to their scores under the Fisher criterion. Therefore, it fails to select
the features that have relatively low individual scores but a very high score when they are combined
together. In addition, it cannot handle redundant features. Because of these limits, this method
was only used as a preselection technique, and was completed with a Sequential Forward Floating
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Selection method (SFFS) later on in the process. The 40 features with the best Fisher criterion score
were selected as the starting point of the SFFS method. The classes used to compute the Fisher
criterion are the children with dysgraphia (D) on one side and the children without dysgraphia (TD
+ ND) on the other side.

For information, the 10 best features from the Fisher criterion are the following ones, ranked from
the highest Fisher score to the lowest:

• Record time

• Total writing time

• Total lift time

• SNvpd

• Number of velocity peaks

• Mean duration of the lifts

• Stroke maximum time

• Number of stops

• Number of stops on the x axis

• Standard deviation of the slow moves duration

Training of the Model

Once the features computed and ordered according to the Fisher criterion, we were able to start
training the classification model. The Scikit-learn package [27] was used to develop our algorithms
with the language Python. To choose which machine learning method to use for the pre-diagnosis
tool, we decided to compute the performances of 11 different techniques using the 40 best features
from the Fisher criterion method described above. Default hyperparameters were used for this
comparison. The sensitivity (3) (proportion of actual children with dysgraphia that are correctly
identified as such, corresponding to the True Positive ratio) and specificity (4) (proportion of actual
children without dysgraphia, TD or ND, that are correctly identified as such, corresponding to the
True Negative ratio) obtained with all techniques are given in TABLE 4. Because both sensitivity
and specificity are important factors for this model evaluation step, their mean, the balanced accu-
racy, was computed as well and used to compare models performances. We can see in FIGURE 4
the models and their balanced accuracy score. These performances were computed on the validation
groups using a k-fold cross validation repeated 1000 times, as described in the process below.

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(4)

Where:
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• TP is the number of children with dysgraphia (D) that are correctly identified as such

• FN is the number of children with dysgraphia (D) that are not correctly identified

• TN is the number of children without dysgraphia (TD + ND) that are correctly identified as
such

• FP is the number of children without dysgraphia (TD + ND) identified as with dysgraphia

With so few data, normal deep learning methods would not have good performances. However,
it was decided to test a class of Recurrent Neural Network: Long short-term memory (LSTM)
networks, adapted for analysis of time series. To this end, raw data was directly used instead of
the features extracted from it, because LSTM go through time series with a settable time window
and is able to retain some long-term information and pattern [28]. The raw data was filtered with a
low pass fourth order Butterworth filter with a cut-off frequency of 15 Hz before feeding it to the
network, with 10 epochs with batches of size 40. The network consists of one LSTM layer of size
64, followed by a dense layer with a sigmoid activation. The package TensorFlow [29] was used
for this model.

Table 4: Classification performances of different machine learning techniques.They were all
evaluated with default hyperparameters, except for LSTM, which had a layer of size 64
and a sigmoid activation. The model selected for the following steps (fine-tuning and
evaluation on the test set) was the one with the best-balanced accuracy.

Model Sensitivity Specificity Balanced Accuracy
Gaussian Process 35% 95% 65%

LSTM 74% 58% 66%
SVM (polynomial kernel degree 2) 40% 92% 66%

Decision Tree 48% 85% 66,50%
SVM (polynomial kernel degree 3) 39% 96% 68%

SVM (sigmoid kernel) 68% 68% 68%
Gradient Boost 50% 93% 71,50%

Gaussian Naive Bayes 56% 90% 73%
Random Forest 63% 84% 73,50%

Adaboost 55% 93% 74%
SVM (linear kernel) 70% 84% 77%
SVM (RBF kernel) 74% 80% 77%

Support Vector Machine (SVM) with linear kernel and Radial Basis Kernel (RBF) showed compa-
rable performances (the two rightmost models in FIGURE 4). Following this comparison, it was
decided to use SVM technique with RBF kernel to design the pre-diagnosis tool. RBF kernel is
indeed known to work well in practice for a lot of problem. Moreover, it is relatively simple to tune
with only two hyperparameters.

SVM is one of the most commonly used Machine Learning technique [16]. It is known to perform
well even with high dimensional data and small datasets [30]. Different weights can be assigned
to the samples, which makes the model usable with imbalanced datasets as done in this study. The
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Figure 4: Graph display of the previous results. We see both SVM with linear and RBF kernels
were better than the other models, but RBF work better in practice with a lot of problems.

Scikit-learn website gives a good overview of the SVM technique. For more details, one can refer
to [31].

To tune a SVM using a RBF kernel two hyperparameters have to be considered: C and γ. C is
common to all SVM kernels. It trades off misclassification of training examples against simplicity
of the decision surface. The γ parameter defines how much influence a single training example has.
As described below, a large number of features has been developed, and the Fisher criterion cannot
be used alone to select features. In order to make an effective classification algorithm and to avoid
overfitting, a features selection approach was lead using the Sequential Forward Floating Selection
(SFFS) method [32].

To conciliate hyperparameters optimization and features selection, the following process was car-
ried out. A first set of hyperparameters was set using a Random Search method with the 40 best
features according to the Fisher criterion. Then the SFFS method was applied to identify the most
discriminative features. A new set of hyperparameters was then fixed with a new Random Search
optimization, and so on.

Because our datasets were imbalanced (many more children without dysgraphia than children with
it) we used a balanced accuracy metric to evaluate the quality of the models during training. Every
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time a set of hyperparameters and features was fixed, the model was evaluated using a repeated
stratified 10-fold cross validation [33]. Here is a summary of the method:

• Shuffle the train dataset randomly

• Split the train dataset into k groups (here k = 10), keeping a similar proportion of children with
and without dysgraphia in each group

• For each unique group:

◦ Take the group as a validation data set
◦ Take the remaining groups as a training data set
◦ Fit a model on the training set and evaluate it on the validation set
◦ Retain the evaluation score and discard the model

This whole process was repeated 1000 times, and the performances were averaged over these 1000
10-fold repetitions. The final selected hyperparameters and features were the ones leading to the
best-balanced accuracy averaged on these 1000 k-folds.

Test of the Final Model on the test Dataset

With the final hyperparameters and features, a model was trained using the whole train dataset.
This model was finally tested on the test dataset (20 % of the children) set aside at the beginning of
the machine learning procedure and not used for the model training. The test dataset was normal-
ized with the moving z-score calculation method described above using the average and standard
deviation values from the train dataset, in order to avoid data leakage.

3. RESULTS

The results of the rating of the BHK of all children are presented in TABLE 3. Among the children
recruited in schools, 30 have been diagnosed with dysgraphia(6.7%). This is in agreement with
previous observations [1, 8]. As expected, the average quality score of the children with dysgraphia
from the hospital is lower than that of children with dysgraphia from schools. The first ones have
an average BHK quality score of −3.1 and an average speed score of −1.1 whereas the second ones
have an average quality score of −2.6 and an average speed score of 0.1. According to Welch’s
t-test, these means are significantly different (p<0.05 and p<0.0005 respectively). This confirms
that involving children with dysgraphia from schools (less severe dysgraphia) in the creation of the
pre-diagnosis tool is important to avoid recognizing only the most severe cases of dysgraphia [4].

The hyperparameters optimization and features selection loop converged to the following results:

• C = 0.374

• γ = 0.144
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The best performances of the models on the validation folds were obtained with a total of 15 features
listed below (cf Features extraction for more details about the features).

• BHK specific features (4):

◦ Draw backs per line
◦ Mean of the significant differences of the margin (>2 mm)
◦ Standard deviation of the space between the words
◦ Number of telescoping per line

• General features (11):

◦ Mean duration of the slow moves
◦ Mean Rényi Entropy of order 2 on the x axis
◦ Mean Rényi Entropy of order 2 on the y axis
◦ Mean velocity of the velocity peaks
◦ Number of stops on the x axis
◦ Number of strokes per second
◦ Number of velocity peaks per second
◦ Strokes median time
◦ Signal to Noise ratio on the y axis
◦ Total lift time
◦ Total writing time

One can note the presence in these features of some of the best features from the Fisher criterion.
Unfortunately, the SNvpd, which was expected to be a discriminative feature, does not emerge. On
the other hand, the total writing, total lift time, number of stops on the x axis and number of velocity
peaks, which were among the best features from the Fisher criterion, were selected by the SFFS
process. All these features are linked with the dynamic characteristics of dysgraphia (see Features
extraction for more precisions). With these features and hyperparameters, the results of the final
model on the test dataset are the following:

- Specificity: 91%

- Sensitivity: 81%

- Accuracy: 86%

- Balanced Accuracy: 83%

This means that 91% of the children with dysgraphia and 81% of the children without dysgraphia
were correctly identified as such.
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Out of 22 children with dysgraphia in the test dataset, only 2 were badly identified by the model.
The first one had a BHK quality score of −2.03 and a BHK speed score of −0.57. Therefore, he/she
is very close to not presenting a dysgraphia, and one can imagine that another human examiner
could have diagnosed this child as without dysgraphia as well. The other false negative child had
a quality score of −3.49, but a speed score of 1.29, meaning that he/she wrote the BHK text quite
fast. This fast writing may have misled the model, TABLE 5.

Table 5: Confusion matrix of the final classification model on the test dataset.
Predicted label
No Dys Dys

Tr
ue

la
be
l

N
o
D
ys

81% 19%
D
ys

9% 91%

On the other hand, out of the 97 children without dysgraphia in the test dataset, 18 were identified as
having dysgraphia by the model (false positive). The average BHK quality score of these children
is −0.46, and their average speed score is −0.01. More than half of these false positive children (12
out of 18) have a quality score and/or a speed score close to or below −1, meaning they present signs
of a poor handwriting. Diagnosing these children as having dysgraphia does not seem problematic
as they could benefit from an appointment with a clinician to help improve their handwriting. Three
out of the 6 last children have written the text in an unusual way (only on 2 or 3 lines, or with many
erasures), which may have misled the model. Two examples of written records of such children are
given in FIGURE 5 and FIGURE 6.

Figure 5: Example of written record of one of the false positive children who wrote the BHK text
with many erasures.

129



https://www.oajaiml.com/ | August-2021 LOUIS DESCHAMPS, ET AL.

Figure 6: Example of written record of one of the false positive children who wrote the BHK text
on 3 lines only.

4. DISCUSSION

Database Richness

This paper is based on the world’s largest database of numeric handwriting samples. This database
was carefully acquired using four different models of graphic tablets and two acquisition software
solutions. Thus, our results are likely to be themost reliable for a large-scale use. Moreover, children
were recruited from various origins to ensure a wide range of writing characteristics. Recruiting
children with dysgraphia from the hospital is a good way to increase the number of data available
for children with dysgraphia. But we would like to emphasize the fact that it is very important to
include children with dysgraphia from schools in the database, since a difference in the severity
of dysgraphia between children recruited in hospital and in schools has been described [8], which
is in agreement with our results. This ensures that the model is not biased toward recognizing
only the most severe dysgraphia. We indeed confirmed that the children from the hospital have
significantly worse BHK quality and speed scores than the children with dysgraphia from schools.
This can be explained by the fact that only the worst writers are sent to the Reference Center for
Language and Learning Disorders of the Grenoble Hospital. Thus, the model created by Asselborn
et al. in [3] seems biased, and the excellent performances claimed by the authors must be qualified.
A comment paper [4] has been published to highlight some methodological issues creating some
important biases in this paper, such as artifacts not filtered and not written by the children, only
present in the (D) dataset, or the lack of correction for age-related changes in features. Therefore,
the strength of our database is not only its size, but also its inclusion of a wide range of profiles
allowing better generalizability of the models.

BHK Test Limitations

We would also like to stress thatthe inter-rater correlation in the French version of the BHK test
goes from 0.68 for beginner raters, to 0.90 for very experienced ones [1]. The intra-rater agreement
percentage is around 85% when correcting the same texts with a 6 months interval [1]. Thus, the
mean sensitivity and specificity of around 80% obtained by our classifier are thus comparable to
what we could expect from a single human expert rated by his peers. In order to improve these
figures, it could be necessary to assess all BHK texts by multiple raters to try to get as close as
possible from a purely objective and certain label of the children.

130



https://www.oajaiml.com/ | August-2021 LOUIS DESCHAMPS, ET AL.

Moving z-Score Computation

Between the age of 6 and 10, the children handwriting improves quickly, creating big differences
in the quality of the written trace between a 6-year-old and a 10-year-old child. Consequently,
comparing the handwriting quality of children of different ages is difficult. In this paper, we
developed the method that we called the “moving z-score” to compensate for this handwriting
quality improvement with respect to children age. Thanks to this method, we were able to gather
children of various ages in the same database and use them all to create a dysgraphia pre-diagnosis
model.

Comments on the Feature Selected for the Final Model

Almost all features in the final model we developed are interpretable (durations, number of peaks,
writing regularity…). An advantage of our model compared to a method that would be only based
on highly sophisticated, non-interpretable features is that once a child is identified as having dys-
graphia, our tool could help the clinicians to identify which aspects of the handwriting have to
be improved. In addition, our tool is more valuable for researchers working on dysgraphia, as
the features used as inputs of our model are more easily interpretable in terms of neuromotor or
neuropsychological processes.

Several selected features are closely related to the detection of irregularities in writing. These
irregularities are not sources of precision loss, but instead constitute the basis of the discrimination
between typical and atypical writing, since children with dysgraphia tend to present these irregular-
ities. Some features are related to the static features of the writing, such as “Number of telescoping
per line” (which represents overlapping characters) or “Standard deviation of the space between the
words” (which represents irregularity in word separation): this is mostly what the standard BHK test
evaluates. Other features are linked to the kinematic of the movement during writing, such as “Mean
Rényi Entropy” (which represents erratic movements) or “Number of stops” (which represents the
difficulty to write without making stops). Thus, irregularities in writing should not be filtered, but
instead interpreted as they are relevant for detecting children with dysgraphia.

4.1 Comments on the Model Performances

The classification performances presented are a little bit below the ones given in some recent papers
[3, 34], but close or better than some others [16, 35–37], and they are presented in TABLE 6. The
results in these papers are good and very interesting but each of these articles has a limitation that
seems to make it unfit to be extended for a large-scale dysgraphia pre-diagnosis. [3, 34] only study
children with dysgraphia from the CRTLA. Yet we just showed that their BHK scores are in average
significantly worse than the ones of a more generic dysgraphic population recruited in schools.
Therefore, there is strong chance that models showing good performances on these children would
give poorer results when tested at a large scale on children from schools. On the contrary, we have
included children with dysgraphia from schools, improving generalizability of the model if used on
populations not from medical centers. On the other hand, [16, 35, 36] only focus on a small number
of children (91 and 78), which can be an issue especially when the data have high dimensions.
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Table 6: Results from other studies. Some studies tried several models of classification of children
whith dysgraphia (D) and typically developing children (TD). 1The score used is not
balanced accuracy but only the percentage of children with dysgraphia actually detected
by the algorithm. 2The score used is the accuracy, because the sets are almost balanced.

Reference D/TD repartition Model used Score
[2] 27/27 Random Forest 96.43%
[3] 56/242 Random Forest 97.9%
[16] 48/43 SVM (RBF Kernel) 82.51%
[34] 24/971 RNN 90%1

[35] 48/43 Backpropagation 84.7%
[36] 42/36 Random Forest 67%
[36] 42/36 SVM 66%
[36] 42/36 AdaBoost 64%
[37] 57/63 Random Forest 77.6%2

[37] 57/63 SVM 78.8%2

[37] 57/63 AdaBoost 79.5%2

Moreover [16] and [35] use writing on a tablet device (Android), which is known to affect movement
control and execution [10-12]. Once again, there is no proof that the performances they claim could
be generalized. Finally, Drotár et al. [37] used more than 1000 features with a database of 120
children, which may lead to some overfitting to the database. Besides, the children with dysgraphia
included in their study come from the “Centre for Special-Needs”, which may indicate that they
do not represent the general population of children with dysgraphia, but again only the children
with really low BHK score. Our study is the only one that focuses on a large number of children
with dysgraphia from various origins and with a wide range of BHK scores. Therefore, the results
presented in this paper are certainly the most realistic ones for a wide screening of the population.

5. CONCLUSION

Aiming to develop a pre-diagnosis tool for dysgraphia, we created a database of handwriting tra-
jectory of 580 children, including 122 children with dysgraphia, by using four graphic tablets and
two acquisition software solutions. Moreover, the age-related evolution of handwriting has been
taken into account thanks to the moving z-score method. In order to avoid bias of our pre-diagnosis
algorithm towards the children with the most severe dysgraphia, we also considered children with
dysgraphia from the general population from schools. We used a SVM approach as this kind of
algorithm is known to exploit not only the most relevant features but also “minor features”. They
are also known to give good performances with high dimensional problems. Our SVM based
model achieves a sensitivity of 91% for children with dysgraphia and a specificity of 81% for
children without dysgraphia. Thus, our tool has an accuracy level comparable to a human examiner.
Although our model is based on BHK rating from 1 to 3 raters, it would be improved if BHK tests
were rated by more raters in order to minimize the effect of the inter-rater variability, well known
for the BHK test. Overall, our dysgraphia pre-diagnosis algorithm could be widely usable, because
of its independence to the tablet, the acquisition software and the age of the children. The approach
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by classification algorithms as we present in this paper and as we can find in [3] is a good first
step toward automated pre-diagnosis of dysgraphia. However, its main flaw is that it does not
estimate the severity of dysgraphia. Indeed, further work will aim at developing and estimating the
performances of a regression model for dysgraphia severity, and compare it to BHK scores.

Finally, writing the BHK text takes some time and is clearly language dependent. Developing a
model able to diagnose dysgraphia based on language-independent stimuli such as drawings would
allow creating a unique international diagnosing tool for dysgraphia.
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