[1]
A. Abdalqader, F. Jin, and A. Al-Tabbaa: Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. J. Clean. Prod. (2016), Vol. 113, pp.66-75.
DOI: 10.1016/j.jclepro.2015.12.010
Google Scholar
[2]
S. Badur, and R. Chaudhary: Utilization of hazardous wastes and by-products as a green concrete material through s/s process: a review. Rev Adv Mater Sci (2008), Vol. 17, p.42–61.
Google Scholar
[3]
J. Provis, and S. Bernal: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. (2014), Vol. 44, pp.299-327.
DOI: 10.1146/annurev-matsci-070813-113515
Google Scholar
[4]
C. Meyer: The greening of the concrete industry. Cement Concrete Composite (2009), Vol. 31, p.601–605.
DOI: 10.1016/j.cemconcomp.2008.12.010
Google Scholar
[5]
L. Federic, and S. Chidiac: Waste glass as a supplementary cementitious material in concrete – critical review of treatment methods, Cement Concr Compos (2009), Vol. 31, p.606–610.
DOI: 10.1016/j.cemconcomp.2009.02.001
Google Scholar
[6]
M. Mannan, and C. Ganapathy: Engineering properties of concrete with oil palm shell as coarse aggregate. Constr. Build. Mater. (2002), Vol. 16, pp.29-34.
DOI: 10.1016/s0950-0618(01)00030-7
Google Scholar
[7]
D. Teo, M. Mannan, and V. Kurian, V.J: Production of lightweight concrete using oil palm shell (OPS) aggregates. In: 4th International Conference on Structural Materials (ConMat 2009), 24-26 August (2009), Nagoya.
Google Scholar
[8]
S. Kou, and C. Poon: Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cement Concr Compos (2009), Vol.31, p.622–627.
DOI: 10.1016/j.cemconcomp.2009.06.005
Google Scholar
[9]
A. Ridzuan, A. Diah, R. Hamir, and K. Kamarulzaman KB: The influence of recycled aggregate on the early compressive strength and drying shrinkage of concrete. Structural Engineering Mechanics and Computation. In: Proceedings of the International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa, 2–4 April; (2001), Vol.2, p.1415–1422.
DOI: 10.1016/b978-008043948-8/50158-2
Google Scholar
[10]
M. Mithun, and C. Narasimhan: Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate, Journal of Cleaner Production (2016), Vol.112, pp.837-844.
DOI: 10.1016/j.jclepro.2015.06.026
Google Scholar
[11]
K. Khanzadi and A. Behnood: Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate Construction and Building Materials (2009), Vol. 23, pp.2183-2188.
DOI: 10.1016/j.conbuildmat.2008.12.005
Google Scholar
[12]
B. Gorai, R. Jana:Characteristics and utilization of copper slag – a review, Resour. Conser. Rec., Vol. 39 (2003), pp.299-313.
Google Scholar
[13]
W. Wua, Z. Weide, and M. Guowei: Optimum content of copper slag as a fine aggregate in high strength concrete Mater. Des., (2010), Vol. 31, pp.2878-2883.
DOI: 10.1016/j.matdes.2009.12.037
Google Scholar
[14]
S. Al-Jabri, H. Makoto, K. Al-Oraimi, and H. Al-Saidy: Copper slag as sand replacement for high performance concrete, Cem. Concr. Comp., (2009), Vol.31, pp.483-488.
DOI: 10.1016/j.cemconcomp.2009.04.007
Google Scholar
[15]
P. Kathirvel, S.R.M. Kaliyaperumal: Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete Constr. Build. Mater., 102 (2016), pp.51-5.
DOI: 10.1016/j.conbuildmat.2015.10.148
Google Scholar
[16]
K. Parthiban and K. Mohan: Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete. Construction and Building Materials Vol. 133, (2017), pp.65-72.
DOI: 10.1016/j.conbuildmat.2016.12.050
Google Scholar
[17]
Semiha Akçaözoğlu and Cüneyt Ulu 2014 Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends Construction and Building Materials Volume 58, 15 May 2014, Pages 31-37.
DOI: 10.1016/j.conbuildmat.2014.02.011
Google Scholar
[18]
A. Rashad: Alkali-activated metakaolin: a short guide for civil engineer – an overview, Constr Build Mater, Vol. 41 (2013), pp.751-765.
DOI: 10.1016/j.conbuildmat.2012.12.030
Google Scholar
[19]
Ramesh, R. Gandhimathi, P.V. Nidheesh, S. Rajakumar, S. Prateepkumar: Use of furnace slag and welding slag as replacement for sand in concrete Int. J. Energy Environ. Eng., 4 (3) (2013), pp.1-6.
DOI: 10.1186/2251-6832-4-3
Google Scholar
[20]
Binici, M.Y. Durgun, T. Rizaoglu, M. Koluçolak: Investigation of durability properties of concrete pipes incorporating blast furnace slag and ground basaltic pumice as fine aggregates Sci. Iran. A, 19 (3) (2012), pp.366-372.
DOI: 10.1016/j.scient.2012.04.007
Google Scholar
[21]
N. Banthia, C. Chan, Use of recycled aggregate in plain fiber-reinforced shotcrete, Concr. Int. 22 (6) (2000) 41–45.
Google Scholar
[22]
M. Frigione Recycling of PET bottles as fine aggregate in concrete Waste Manage, 30 (6) (2010), pp.1101-1106.
DOI: 10.1016/j.wasman.2010.01.030
Google Scholar
[23]
R.V. Silva, J. de Brito, R.K. Dhir Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production Constr. Build. Mater., 65 (2014), pp.201-217.
DOI: 10.1016/j.conbuildmat.2014.04.117
Google Scholar
[24]
C.S. Poon, C.S. Lam The effect of aggregate-to-cement ratio and types of aggregates on properties of precast concrete blocks Cem. Concr. Compos., 30 (2008), pp.283-289.
DOI: 10.1016/j.cemconcomp.2007.10.005
Google Scholar
[25]
F. Collins, and J.G. Sanjayan: Effect of pore size distribution on drying shrinking of alkali-activated slag concrete Cem. Concr. Res., 30 (9) (2000), pp.1401-1406.
DOI: 10.1016/s0008-8846(00)00327-6
Google Scholar
[26]
T. Bakharev, J.G. Sanjayan, Y.B. Cheng: Hydration of slag activated by alkalis J. Aust. Ceram. Soc., 34 (2) (1998), pp.195-200.
Google Scholar
[27]
E.B. Robin, W.D. Horst: Modelling acid attack on concrete: part I. the essential mechanisms Cem. Concr. Res., 35 (2005), pp.2333-2339.
Google Scholar