Computer Science > Artificial Intelligence
[Submitted on 13 Dec 2023]
Title:A multi-sourced data and agent-based approach for complementing Time Use Surveys in the context of residential human activity and load curve simulation
View PDFAbstract:To address the major issues associated with using Time-Use Survey (TUS) for simulating residential load curves, we present the SMACH approach, which combines qualitative and quantitative data with agent-based simulation. Our model consists of autonomous agents assigned with daily tasks. The agents try to accomplish their assigned tasks to the best of their abilities. Quantitative data are used to generate tasks assignments. Qualitative studies allow us to define how agents select, based on plausible cognitive principles, the tasks to accomplish depending on the context. Our results show a better representation of weekdays and weekends, a more flexible association of tasks with appliances, and an improved simulation of load curves compared to real data. Highlights $\bullet$ Discussion about Time-Use Surveys (TUS) limits and the use of TUS in activity and energy simulation $\bullet$ Presentation of complementary data both qualitative and quantitative used to complement TUS data $\bullet$ Proposition of an agent-based approach that balances these limitations
Submission history
From: Nicolas Sabouret [view email] [via CCSD proxy][v1] Wed, 13 Dec 2023 08:28:55 UTC (709 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.