Computer Science > Cryptography and Security
[Submitted on 5 Nov 2023 (v1), last revised 12 Dec 2023 (this version, v2)]
Title:RecAGT: Shard Testable Codes with Adaptive Group Testing for Malicious Nodes Identification in Sharding Permissioned Blockchain
View PDF HTML (experimental)Abstract:Recently, permissioned blockchain has been extensively explored in various fields, such as asset management, supply chain, healthcare, and many others. Many scholars are dedicated to improving its verifiability, scalability, and performance based on sharding techniques, including grouping nodes and handling cross-shard transactions. However, they ignore the node vulnerability problem, i.e., there is no guarantee that nodes will not be maliciously controlled throughout their life cycle. Facing this challenge, we propose RecAGT, a novel identification scheme aimed at reducing communication overhead and identifying potential malicious nodes. First, shard testable codes are designed to encode the original data in case of a leak of confidential data. Second, a new identity proof protocol is presented as evidence against malicious behavior. Finally, adaptive group testing is chosen to identify malicious nodes. Notably, our work focuses on the internal operation within the committee and can thus be applied to any sharding permissioned blockchains. Simulation results show that our proposed scheme can effectively identify malicious nodes with low communication and computational costs.
Submission history
From: Dongyang Yu [view email][v1] Sun, 5 Nov 2023 07:43:48 UTC (1,077 KB)
[v2] Tue, 12 Dec 2023 09:00:11 UTC (1,939 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.