Computer Science > Information Theory
[Submitted on 15 Aug 2023]
Title:Robust Indexing for the Sliced Channel: Almost Optimal Codes for Substitutions and Deletions
View PDFAbstract:Encoding data as a set of unordered strings is receiving great attention as it captures one of the basic features of DNA storage systems. However, the challenge of constructing optimal redundancy codes for this channel remained elusive. In this paper, we address this problem and present an order-wise optimal construction of codes that are capable of correcting multiple substitution, deletion, and insertion errors for this channel model. The key ingredient in the code construction is a technique we call robust indexing: simultaneously assigning indices to unordered strings (hence, creating order) and also embedding information in these indices.
The encoded indices are resilient to substitution, deletion, and insertion errors, and therefore, so is the entire code.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.