Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Aug 2023]
Title:StyleEDL: Style-Guided High-order Attention Network for Image Emotion Distribution Learning
View PDFAbstract:Emotion distribution learning has gained increasing attention with the tendency to express emotions through images. As for emotion ambiguity arising from humans' subjectivity, substantial previous methods generally focused on learning appropriate representations from the holistic or significant part of images. However, they rarely consider establishing connections with the stylistic information although it can lead to a better understanding of images. In this paper, we propose a style-guided high-order attention network for image emotion distribution learning termed StyleEDL, which interactively learns stylistic-aware representations of images by exploring the hierarchical stylistic information of visual contents. Specifically, we consider exploring the intra- and inter-layer correlations among GRAM-based stylistic representations, and meanwhile exploit an adversary-constrained high-order attention mechanism to capture potential interactions between subtle visual parts. In addition, we introduce a stylistic graph convolutional network to dynamically generate the content-dependent emotion representations to benefit the final emotion distribution learning. Extensive experiments conducted on several benchmark datasets demonstrate the effectiveness of our proposed StyleEDL compared to state-of-the-art methods. The implementation is released at: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.