Computer Science > Software Engineering
[Submitted on 12 Jul 2023]
Title:How Many Papers Should You Review? A Research Synthesis of Systematic Literature Reviews in Software Engineering
View PDFAbstract:[Context] Systematic Literature Review (SLR) has been a major type of study published in Software Engineering (SE) venues for about two decades. However, there is a lack of understanding of whether an SLR is really needed in comparison to a more conventional literature review. Very often, SE researchers embark on an SLR with such doubts. We aspire to provide more understanding of when an SLR in SE should be conducted. [Objective] The first step of our investigation was focused on the dataset, i.e., the reviewed papers, in an SLR, which indicates the development of a research topic or area. The objective of this step is to provide a better understanding of the characteristics of the datasets of SLRs in SE. [Method] A research synthesis was conducted on a sample of 170 SLRs published in top-tier SE journals. We extracted and analysed the quantitative attributes of the datasets of these SLRs. [Results] The findings show that the median size of the datasets in our sample is 57 reviewed papers, and the median review period covered is 14 years. The number of reviewed papers and review period have a very weak and non-significant positive correlation. [Conclusions] The results of our study can be used by SE researchers as an indicator or benchmark to understand whether an SLR is conducted at a good time.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.