Computer Science > Machine Learning
[Submitted on 22 Jun 2023 (v1), last revised 24 Oct 2023 (this version, v2)]
Title:Logarithmic Regret for Matrix Games against an Adversary with Noisy Bandit Feedback
View PDFAbstract:This paper considers a variant of zero-sum matrix games where at each timestep the row player chooses row $i$, the column player chooses column $j$, and the row player receives a noisy reward with mean $A_{i,j}$. The objective of the row player is to accumulate as much reward as possible, even against an adversarial column player. If the row player uses the EXP3 strategy, an algorithm known for obtaining $\sqrt{T}$ regret against an arbitrary sequence of rewards, it is immediate that the row player also achieves $\sqrt{T}$ regret relative to the Nash equilibrium in this game setting. However, partly motivated by the fact that the EXP3 strategy is myopic to the structure of the game, O'Donoghue et al. (2021) proposed a UCB-style algorithm that leverages the game structure and demonstrated that this algorithm greatly outperforms EXP3 empirically. While they showed that this UCB-style algorithm achieved $\sqrt{T}$ regret, in this paper we ask if there exists an algorithm that provably achieves $\text{polylog}(T)$ regret against any adversary, analogous to results from stochastic bandits. We propose a novel algorithm that answers this question in the affirmative for the simple $2 \times 2$ setting, providing the first instance-dependent guarantees for games in the regret setting. Our algorithm overcomes two major hurdles: 1) obtaining logarithmic regret even though the Nash equilibrium is estimable only at a $1/\sqrt{T}$ rate, and 2) designing row-player strategies that guarantee that either the adversary provides information about the Nash equilibrium, or the row player incurs negative regret. Moreover, in the full information case we address the general $n \times m$ case where the first hurdle is still relevant. Finally, we show that EXP3 and the UCB-based algorithm necessarily cannot perform better than $\sqrt{T}$.
Submission history
From: Arnab Maiti [view email][v1] Thu, 22 Jun 2023 22:45:48 UTC (130 KB)
[v2] Tue, 24 Oct 2023 22:51:29 UTC (292 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.