Computer Science > Machine Learning
[Submitted on 30 May 2023 (v1), last revised 30 Sep 2024 (this version, v3)]
Title:It begins with a boundary: A geometric view on probabilistically robust learning
View PDF HTML (experimental)Abstract:Although deep neural networks have achieved super-human performance on many classification tasks, they often exhibit a worrying lack of robustness towards adversarially generated examples. Thus, considerable effort has been invested into reformulating standard Risk Minimization (RM) into an adversarially robust framework. Recently, attention has shifted towards approaches which interpolate between the robustness offered by adversarial training and the higher clean accuracy and faster training times of RM. In this paper, we take a fresh and geometric view on one such method -- Probabilistically Robust Learning (PRL). We propose a mathematical framework for understanding PRL, which allows us to identify geometric pathologies in its original formulation and to introduce a family of probabilistic nonlocal perimeter functionals to rectify them. We prove existence of solutions to the original and modified problems using novel relaxation methods and also study properties, as well as local limits, of the introduced perimeters. We also clarify, through a suitable $\Gamma$-convergence analysis, the way in which the original and modified PRL models interpolate between risk minimization and adversarial training.
Submission history
From: Leon Bungert [view email][v1] Tue, 30 May 2023 06:24:30 UTC (324 KB)
[v2] Wed, 18 Sep 2024 15:36:39 UTC (209 KB)
[v3] Mon, 30 Sep 2024 14:07:43 UTC (209 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.