Computer Science > Computer Science and Game Theory
[Submitted on 9 Feb 2023 (v1), last revised 26 Jun 2023 (this version, v2)]
Title:Quantum Potential Games, Replicator Dynamics, and the Separability Problem
View PDFAbstract:Gamification is an emerging trend in the field of machine learning that presents a novel approach to solving optimization problems by transforming them into game-like scenarios. This paradigm shift allows for the development of robust, easily implementable, and parallelizable algorithms for hard optimization problems. In our work, we use gamification to tackle the Best Separable State (BSS) problem, a fundamental problem in quantum information theory that involves linear optimization over the set of separable quantum states. To achieve this we introduce and study quantum analogues of common-interest games (CIGs) and potential games where players have density matrices as strategies and their interests are perfectly aligned. We bridge the gap between optimization and game theory by establishing the equivalence between KKT (first-order stationary) points of a BSS instance and the Nash equilibria of its corresponding quantum CIG. Taking the perspective of learning in games, we introduce non-commutative extensions of the continuous-time replicator dynamics and the discrete-time Baum-Eagon/linear multiplicative weights update for learning in quantum CIGs, which also serve as decentralized algorithms for the BSS problem. We show that the common utility/objective value of a BSS instance is strictly increasing along trajectories of our algorithms, and finally corroborate our theoretical findings through extensive experiments.
Submission history
From: Ryann Sim Wei Jian [view email][v1] Thu, 9 Feb 2023 17:27:32 UTC (1,853 KB)
[v2] Mon, 26 Jun 2023 06:42:28 UTC (5,241 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.