Mathematics > Optimization and Control
[Submitted on 11 Oct 2022]
Title:Functional Constrained Optimization for Risk Aversion and Sparsity Control
View PDFAbstract:Risk and sparsity requirements often need to be enforced simultaneously in many applications, e.g., in portfolio optimization, assortment planning, and treatment planning. Properly balancing these potentially conflicting requirements entails the formulation of functional constrained optimization with either convex or nonconvex objectives. In this paper, we focus on projection-free methods that can generate a sparse trajectory for solving these challenging functional constrained optimization problems. Specifically, for the convex setting, we propose a Level Conditional Gradient (LCG) method, which leverages a level-set framework to update the approximation of the optimal value and an inner conditional gradient oracle (CGO) for solving mini-max subproblems. We show that the method achieves $\mathcal{O}\big(\frac{1}{\epsilon^2}\log\frac{1}{\epsilon}\big)$ iteration complexity for solving both smooth and nonsmooth cases without dependency on a possibly large size of optimal dual Lagrange multiplier. For the nonconvex setting, we introduce the Level Inexact Proximal Point (IPP-LCG) method and the Direct Nonconvex Conditional Gradient (DNCG) method. The first approach taps into the advantage of LCG by transforming the problem into a series of convex subproblems and exhibits an $\mathcal{O}\big(\frac{1}{\epsilon^3}\log\frac{1}{\epsilon}\big)$ iteration complexity for finding an ($\epsilon,\epsilon$)-KKT point. The DNCG is the first single-loop projection-free method, with iteration complexity bounded by $\mathcal{O}\big(1/\epsilon^4\big)$ for computing a so-called $\epsilon$-Wolfe point. We demonstrate the effectiveness of LCG, IPP-LCG and DNCG by devising formulations and conducting numerical experiments on two risk averse sparse optimization applications: a portfolio selection problem with and without cardinality requirement, and a radiation therapy planning problem in healthcare.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.