Computer Science > Graphics
[Submitted on 21 Sep 2022]
Title:A Data-Centric Methodology and Task Typology for Time-Stamped Event Sequences
View PDFAbstract:Task abstractions and taxonomic structures for tasks are useful for designers of interactive data analysis approaches, serving as design targets and evaluation criteria alike. For individual data types, dataset-specific taxonomic structures capture unique data characteristics, while being generalizable across application domains. The creation of dataset-centric but domain-agnostic taxonomic structures is difficult, especially if best practices for a focused data type are still missing, observing experts is not feasible, and means for reflection and generalization are scarce. We discovered this need for methodological support when working with time-stamped event sequences, a datatype that has not yet been fully systematically studied in visualization research. To address this shortcoming, we present a methodology that enables researchers to abstract tasks and build dataset-centric taxonomic structures in five phases (data collection, coding, task categorization, task synthesis, and action-target(criterion) crosscut). We validate the methodology by applying it to time-stamped event sequences and present a task typology that uses triples as a novel language of description for tasks: (1) action, (2) data target, and (3) data criterion. We further evaluate the descriptive power of the typology with a real-world case on cybersecurity.
Submission history
From: Clara-Maria Barth [view email][v1] Wed, 21 Sep 2022 08:17:50 UTC (6,780 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.