Mathematics > Numerical Analysis
[Submitted on 27 Jul 2022]
Title:Bridging Traditional and Machine Learning-based Algorithms for Solving PDEs: The Random Feature Method
View PDFAbstract:One of the oldest and most studied subject in scientific computing is algorithms for solving partial differential equations (PDEs). A long list of numerical methods have been proposed and successfully used for various applications. In recent years, deep learning methods have shown their superiority for high-dimensional PDEs where traditional methods fail. However, for low dimensional problems, it remains unclear whether these methods have a real advantage over traditional algorithms as a direct solver. In this work, we propose the random feature method (RFM) for solving PDEs, a natural bridge between traditional and machine learning-based algorithms. RFM is based on a combination of well-known ideas: 1. representation of the approximate solution using random feature functions; 2. collocation method to take care of the PDE; 3. the penalty method to treat the boundary conditions, which allows us to treat the boundary condition and the PDE in the same footing. We find it crucial to add several additional components including multi-scale representation and rescaling the weights in the loss function. We demonstrate that the method exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency. In addition, we find that RFM is particularly suited for complex problems with complex geometry, where both traditional and machine learning-based algorithms encounter difficulties.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.