Computer Science > Computational Complexity
[Submitted on 27 Jul 2022 (v1), last revised 3 May 2023 (this version, v2)]
Title:Searching for Regularity in Bounded Functions
View PDFAbstract:Given a function $f$ on $\mathbb{F}_2^n$, we study the following problem. What is the largest affine subspace $\mathcal{U}$ such that when restricted to $\mathcal{U}$, all the non-trivial Fourier coefficients of $f$ are very small?
For the natural class of bounded Fourier degree $d$ functions $f:\mathbb{F}_2^n \to [-1,1]$, we show that there exists an affine subspace of dimension at least $ \tilde\Omega(n^{1/d!}k^{-2})$, wherein all of $f$'s nontrivial Fourier coefficients become smaller than $ 2^{-k}$. To complement this result, we show the existence of degree $d$ functions with coefficients larger than $2^{-d\log n}$ when restricted to any affine subspace of dimension larger than $\Omega(dn^{1/(d-1)})$. In addition, we give explicit examples of functions with analogous but weaker properties.
Along the way, we provide multiple characterizations of the Fourier coefficients of functions restricted to subspaces of $\mathbb{F}_2^n$ that may be useful in other contexts. Finally, we highlight applications and connections of our results to parity kill number and affine dispersers.
Submission history
From: Siddharth Iyer [view email][v1] Wed, 27 Jul 2022 06:00:02 UTC (56 KB)
[v2] Wed, 3 May 2023 17:05:03 UTC (452 KB)
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.