Computer Science > Artificial Intelligence
[Submitted on 2 Jul 2022]
Title:Enabling Harmonious Human-Machine Interaction with Visual-Context Augmented Dialogue System: A Review
View PDFAbstract:The intelligent dialogue system, aiming at communicating with humans harmoniously with natural language, is brilliant for promoting the advancement of human-machine interaction in the era of artificial intelligence. With the gradually complex human-computer interaction requirements (e.g., multimodal inputs, time sensitivity), it is difficult for traditional text-based dialogue system to meet the demands for more vivid and convenient interaction. Consequently, Visual Context Augmented Dialogue System (VAD), which has the potential to communicate with humans by perceiving and understanding multimodal information (i.e., visual context in images or videos, textual dialogue history), has become a predominant research paradigm. Benefiting from the consistency and complementarity between visual and textual context, VAD possesses the potential to generate engaging and context-aware responses. For depicting the development of VAD, we first characterize the concepts and unique features of VAD, and then present its generic system architecture to illustrate the system workflow. Subsequently, several research challenges and representative works are detailed investigated, followed by the summary of authoritative benchmarks. We conclude this paper by putting forward some open issues and promising research trends for VAD, e.g., the cognitive mechanisms of human-machine dialogue under cross-modal dialogue context, and knowledge-enhanced cross-modal semantic interaction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.