Computer Science > Neural and Evolutionary Computing
[Submitted on 24 May 2022]
Title:EventMix: An Efficient Augmentation Strategy for Event-Based Data
View PDFAbstract:High-quality and challenging event stream datasets play an important role in the design of an efficient event-driven mechanism that mimics the brain. Although event cameras can provide high dynamic range and low-energy event stream data, the scale is smaller and more difficult to obtain than traditional frame-based data, which restricts the development of neuromorphic computing. Data augmentation can improve the quantity and quality of the original data by processing more representations from the original data. This paper proposes an efficient data augmentation strategy for event stream data: EventMix. We carefully design the mixing of different event streams by Gaussian Mixture Model to generate random 3D masks and achieve arbitrary shape mixing of event streams in the spatio-temporal dimension. By computing the relative distances of event streams, we propose a more reasonable way to assign labels to the mixed samples. The experimental results on multiple neuromorphic datasets have shown that our strategy can improve its performance on neuromorphic datasets both for ANNs and SNNs, and we have achieved state-of-the-art performance on DVS-CIFAR10, N-Caltech101, N-CARS, and DVS-Gesture datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.