Computer Science > Machine Learning
[Submitted on 28 Apr 2022]
Title:Continual Learning with Bayesian Model based on a Fixed Pre-trained Feature Extractor
View PDFAbstract:Deep learning has shown its human-level performance in various applications. However, current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes. This poses a challenge particularly in intelligent diagnosis systems where initially only training data of a limited number of diseases are available. In this case, updating the intelligent system with data of new diseases would inevitably downgrade its performance on previously learned diseases. Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning built on a fixed pre-trained feature extractor. In this model, knowledge of each old class can be compactly represented by a collection of statistical distributions, e.g. with Gaussian mixture models, and naturally kept from forgetting in continual learning over time. Unlike existing class-incremental learning methods, the proposed approach is not sensitive to the continual learning process and can be additionally well applied to the data-incremental learning scenario. Experiments on multiple medical and natural image classification tasks showed that the proposed approach outperforms state-of-the-art approaches which even keep some images of old classes during continual learning of new classes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.