Computer Science > Cryptography and Security
[Submitted on 10 Sep 2024]
Title:A compact QUBO encoding of computational logic formulae demonstrated on cryptography constructions
View PDF HTML (experimental)Abstract:We aim to advance the state-of-the-art in Quadratic Unconstrained Binary Optimization formulation with a focus on cryptography algorithms. As the minimal QUBO encoding of the linear constraints of optimization problems emerges as the solution of integer linear programming (ILP) problems, by solving special boolean logic formulas (like ANF and DNF) for their integer coefficients it is straightforward to handle any normal form, or any substitution for multi-input AND, OR or XOR operations in a QUBO form. To showcase the efficiency of the proposed approach we considered the most widespread cryptography algorithms including AES-128/192/256, MD5, SHA1 and SHA256. For each of these, we achieved QUBO instances reduced by thousands of logical variables compared to previously published results, while keeping the QUBO matrix sparse and the magnitude of the coefficients low. In the particular case of AES-256 cryptography function we obtained more than 8x reduction in variable count compared to previous results. The demonstrated reduction in QUBO sizes notably increases the vulnerability of cryptography algorithms against future quantum annealers, capable of embedding around $30$ thousands of logical variables.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.