Computer Science > Machine Learning
[Submitted on 19 Aug 2024]
Title:Preference-Optimized Pareto Set Learning for Blackbox Optimization
View PDF HTML (experimental)Abstract:Multi-Objective Optimization (MOO) is an important problem in real-world applications. However, for a non-trivial problem, no single solution exists that can optimize all the objectives simultaneously. In a typical MOO problem, the goal is to find a set of optimum solutions (Pareto set) that trades off the preferences among objectives. Scalarization in MOO is a well-established method for finding a finite set approximation of the whole Pareto set (PS). However, in real-world experimental design scenarios, it's beneficial to obtain the whole PS for flexible exploration of the design space. Recently Pareto set learning (PSL) has been introduced to approximate the whole PS. PSL involves creating a manifold representing the Pareto front of a multi-objective optimization problem. A naive approach includes finding discrete points on the Pareto front through randomly generated preference vectors and connecting them by regression. However, this approach is computationally expensive and leads to a poor PS approximation. We propose to optimize the preference points to be distributed evenly on the Pareto front. Our formulation leads to a bilevel optimization problem that can be solved by e.g. differentiable cross-entropy methods. We demonstrated the efficacy of our method for complex and difficult black-box MOO problems using both synthetic and real-world benchmark data.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.