Computer Science > Software Engineering
[Submitted on 16 Aug 2024]
Title:Selecting Initial Seeds for Better JVM Fuzzing
View PDF HTML (experimental)Abstract:Literature in traditional program fuzzing has confirmed that effectiveness is largely impacted by redundancy among initial seeds, thereby proposing a series of seed selection methods. JVM fuzzing, compared to traditional ones, presents unique characteristics, including large-scale and intricate code, and programs with both syntactic and semantic features. However, it remains unclear whether the existing seed selection methods are suitable for JVM fuzzing and whether utilizing program features can enhance effectiveness. To address this, we devise a total of 10 initial seed selection methods, comprising coverage-based, prefuzz-based, and program-feature-based methods. We then conduct an empirical study on three JVM implementations to extensively evaluate the performance of the seed selection methods within two SOTA fuzzing techniques (JavaTailor and VECT). Specifically, we examine performance from three aspects: (i) effectiveness and efficiency using widely studied initial seeds, (ii) effectiveness using the programs in the wild, and (iii) the ability to detect new bugs. Evaluation results first show that the program-feature-based method that utilizes the control flow graph not only has a significantly lower time overhead (i.e., 30s), but also outperforms other methods, achieving 142% to 269% improvement compared to the full set of initial seeds. Second, results reveal that the initial seed selection greatly improves the quality of wild programs and exhibits complementary effectiveness by detecting new behaviors. Third, results demonstrate that given the same testing period, initial seed selection improves the JVM fuzzing techniques by detecting more unknown bugs. Particularly, 21 out of the 25 detected bugs have been confirmed or fixed by developers. This work takes the first look at initial seed selection in JVM fuzzing, confirming its importance in fuzzing effectiveness and efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.