Computer Science > Computers and Society
[Submitted on 25 May 2024 (v1), last revised 23 Jul 2024 (this version, v2)]
Title:Prioritizing High-Consequence Biological Capabilities in Evaluations of Artificial Intelligence Models
View PDFAbstract:As a result of rapidly accelerating AI capabilities, over the past year, national governments and multinational bodies have announced efforts to address safety, security and ethics issues related to AI models. One high priority among these efforts is the mitigation of misuse of AI models. Many biologists have for decades sought to reduce the risks of scientific research that could lead, through accident or misuse, to high-consequence disease outbreaks. Scientists have carefully considered what types of life sciences research have the potential for both benefit and risk (dual-use), especially as scientific advances have accelerated our ability to engineer organisms and create novel variants of pathogens. Here we describe how previous experience and study by scientists and policy professionals of dual-use capabilities in the life sciences can inform risk evaluations of AI models with biological capabilities. We argue that AI model evaluations should prioritize addressing high-consequence risks (those that could cause large-scale harm to the public, such as pandemics), and that these risks should be evaluated prior to model deployment so as to allow potential biosafety and/or biosecurity measures. Scientists' experience with identifying and mitigating dual-use biological risks can help inform new approaches to evaluating biological AI models. Identifying which AI capabilities post the greatest biosecurity and biosafety concerns is necessary in order to establish targeted AI safety evaluation methods, secure these tools against accident and misuse, and avoid impeding immense potential benefits.
Submission history
From: Jaspreet Pannu [view email][v1] Sat, 25 May 2024 16:29:17 UTC (904 KB)
[v2] Tue, 23 Jul 2024 01:08:25 UTC (407 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.