Computer Science > Cryptography and Security
[Submitted on 12 Jun 2024 (v1), last revised 25 Jun 2024 (this version, v2)]
Title:I Don't Know You, But I Can Catch You: Real-Time Defense against Diverse Adversarial Patches for Object Detectors
View PDF HTML (experimental)Abstract:Deep neural networks (DNNs) have revolutionized the field of computer vision like object detection with their unparalleled performance. However, existing research has shown that DNNs are vulnerable to adversarial attacks. In the physical world, an adversary could exploit adversarial patches to implement a Hiding Attack (HA) which patches the target object to make it disappear from the detector, and an Appearing Attack (AA) which fools the detector into misclassifying the patch as a specific object. Recently, many defense methods for detectors have been proposed to mitigate the potential threats of adversarial patches. However, such methods still have limitations in generalization, robustness and efficiency. Most defenses are only effective against the HA, leaving the detector vulnerable to the AA.
In this paper, we propose \textit{NutNet}, an innovative model for detecting adversarial patches, with high generalization, robustness and efficiency. With experiments for six detectors including YOLOv2-v4, SSD, Faster RCNN and DETR on both digital and physical domains, the results show that our proposed method can effectively defend against both the HA and AA, with only 0.4\% sacrifice of the clean performance. We compare NutNet with four baseline defense methods for detectors, and our method exhibits an average defense performance that is over 2.4 times and 4.7 times higher than existing approaches for HA and AA, respectively. In addition, NutNet only increases the inference time by 8\%, which can meet the real-time requirements of the detection systems. Demos of NutNet are available at: \url{this https URL}.
Submission history
From: Zijin Lin [view email][v1] Wed, 12 Jun 2024 09:16:19 UTC (9,652 KB)
[v2] Tue, 25 Jun 2024 02:11:46 UTC (9,653 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.