Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Jun 2024]
Title:Stealing Image-to-Image Translation Models With a Single Query
View PDF HTML (experimental)Abstract:Training deep neural networks requires significant computational resources and large datasets that are often confidential or expensive to collect. As a result, owners tend to protect their models by allowing access only via an API. Many works demonstrated the possibility of stealing such protected models by repeatedly querying the API. However, to date, research has predominantly focused on stealing classification models, for which a very large number of queries has been found necessary. In this paper, we study the possibility of stealing image-to-image models. Surprisingly, we find that many such models can be stolen with as little as a single, small-sized, query image using simple distillation. We study this phenomenon on a wide variety of model architectures, datasets, and tasks, including denoising, deblurring, deraining, super-resolution, and biological image-to-image translation. Remarkably, we find that the vulnerability to stealing attacks is shared by CNNs and by models with attention mechanisms, and that stealing is commonly possible even without knowing the architecture of the target model.
Submission history
From: Nurit Spingarn Eliezer [view email][v1] Sun, 2 Jun 2024 18:30:41 UTC (41,186 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.