Computer Science > Sound
[Submitted on 17 Apr 2024]
Title:Music Enhancement with Deep Filters: A Technical Report for The ICASSP 2024 Cadenza Challenge
View PDF HTML (experimental)Abstract:In this challenge, we disentangle the deep filters from the original DeepfilterNet and incorporate them into our Spec-UNet-based network to further improve a hybrid Demucs (hdemucs) based remixing pipeline. The motivation behind the use of the deep filter component lies at its potential in better handling temporal fine structures. We demonstrate an incremental improvement in both the Signal-to-Distortion Ratio (SDR) and the Hearing Aid Audio Quality Index (HAAQI) metrics when comparing the performance of hdemucs against different versions of our model.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.